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INTRODUCTION 

Recent evidence indicates that older adults with diabetes 

have an elevated risk of developing musculoskeletal disor-
ders and that the interaction between diabetes and obesity 
further exacerbates this risk.1,2 These findings highlight the 
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Background Abdominal obesity measures such as waist circumference and waist-to-hip ratio 
have been shown to relate more closely to diabetes and musculoskeletal pain than body mass 
index, but conventional tape-based measurements are not easily scalable. A smartphone 
inclinometer application provides a practical alternative by capturing abdominal tilt angles that 
are automatically computed and easily reusable. 
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Purpose This study assessed whether abdominal tilt angles measured using a smartphone 
inclinometer could serve as digital features for classifying diabetes and musculoskeletal pain in 
older adults using machine learning. 

Methods In 105 older adults, 12 abdominal inclination features were extracted from upper and 
lower tilt angles and refined by minimum redundancy maximum relevance selection. Three 
models (Light Gradient Boosting Machine (LightGBM), Balanced Random Forest (BalancedRF), 
and Linear Support Vector Classifier with Probability Calibration) were trained and evaluated 
with five-fold cross-validation. 

Results BalancedRF achieved the best performance for diabetes classification (accuracy = 0.83, 
ROC-AUC = 0.93, PR-AUC = 0.84), with sensitivity 87% and specificity 82%. For 
musculoskeletal pain, LightGBM achieved moderate performance (accuracy = 0.78, ROC-AUC = 
0.83, PR-AUC = 0.56) but sensitivity was limited (53%) despite high specificity (87%). SHAP 
analysis highlighted the squared terms of the lower and total abdominal angles as key features for 
diabetes, while associations were weaker for pain. 

Conclusions Abdominal tilt angles measured by a smartphone inclinometer represent feasible, 
noninvasive digital features for diabetes risk stratification, although utility for musculoskeletal 
pain classification is limited. Future work should validate these findings in larger and longitudinal 
cohorts and explore real-world integration of smartphone posture monitoring for digital health 
applications. 

Key words Abdominal obesity; Diabetes; Digital feature; Machine learning; Musculoskeletal 
pain; Smartphone inclinometer application. 
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need to consider both body mass index (BMI) and overall 
adiposity when managing diabetes and musculoskeletal pain 
in older populations.3,4 Accumulating evidence also 
suggests that abdominal obesity, measured by waist cir-
cumference (WC) and waist-to-hip ratio (WHR), is more 
strongly associated with metabolic and musculoskeletal 
disorders than body mass index (BMI), underscoring the 
clinical importance of assessing central adiposity.5,6 How-
ever, current approaches often rely on manual tape 
measurements or specialized equipment, which limits their 
feasibility in routine community or primary care settings 
because the data are not digitally recorded or integrated into 
healthcare systems.6-8 

Previous research has employed conventional anthro-
pometric indices such as BMI, WC, and WHR, or imaging 
modalities including MRI, CT, and DEXA to assess obesity-
related risks.9-11 While informative, these methods require 
trained personnel or expensive equipment, which reduces 
accessibility in rural areas and small healthcare centers.12,13 
Machine learning approaches have also been explored for 
chronic disease classification; however, many models rely 
on data sources that are not easily obtainable in real-world 
environments, which has contributed to their limited 
adoption in clinical practice.14,15 Although WC measured by 
tape is relatively simple to collect, such data are rarely 
stored in a systematic or digitalized format, making them 
less practical for large-scale or longitudinal, data-driven 
applications.16 As highlighted by recent critiques in digital 
health research, developing classification models based on 
features that are both realistically collectable and easily 
storable is essential for achieving clinical applicability and 
real-world impact.14 

Because smartphones are already the most widely 
available and user-friendly digital devices, Inertial Meas-
urement Unit (IMU)-based measurements can be performed 
with minimal burden, while data are automatically 
collected, stored, and reused for repeated assessments.17 
Recent studies have demonstrated that smartphone cameras 
combined with machine learning can objectively estimate 
total and abdominal fat mass from 2D body silhouette 
images in adults.8,16,18 However, these approaches require 
participants to wear form-fitting clothing and maintain 
specific standing postures, often with assistance or a tripod 
to ensure stable imaging conditions, which may pose 
practical challenges for older adults with limited digital 
literacy in real-world settings.19 IMU sensors embedded in 
smartphones have shown potential as an alternative for 
obesity assessment, but a previous study mainly analyzed 
gait patterns using devices worn at the waist, making it 
difficult to directly measure abdominal obesity.20 Prior 

research has demonstrated that smartphone inclinometer 
applications, which calculate tilt angles from the device’s 
built-in IMU sensor data, can reliably capture spinal 
alignment and deformity, as well as range of motion in 
major joints.21 Extending this evidence, the present study 
examines whether abdominal inclination features measured 
using a smartphone inclinometer can serve as novel digital 
features for classifying diabetes and musculoskeletal pain in 
older adults. 

This study examined whether smartphone inclinometer–
measured abdominal inclination features can classify 
diabetes and musculoskeletal pain in older adults, and 
explored key contributing features using explainable 
artificial intelligence (XAI). We hypothesized that (1) 
simple inclination features extracted from a single 
smartphone placement would provide sufficient discrimi-
natory power, and (2) XAI would reveal clinically 
interpretable patterns that align with known biomechanical 
and metabolic characteristics. By validating a low-cost, 
easy-to-measure, and scalable assessment method, this 
study aims to bridge the gap between rapidly evolving 
machine-learning techniques and their practical deployment 
in community and primary care settings, thereby supporting 
early screening and personalized management in aging 
populations. 

 

METHODS 

Study design and participants 

This cross-sectional observational study included 105 
community-dwelling older adults aged 60 years or older, 
who were recruited from local community health programs 
in Korea. All participants provided written informed 
consent prior to enrollment. Participants were excluded if 
they met any of the following criteria: (1) underweight 
(BMI<18.5 kg/m²) or obesity class III (BMI≥40 kg/m²); (2) 
medical conditions affecting fat distribution (e.g., Cushing’s 
syndrome, metabolic syndrome); (3) inability to maintain an 
upright standing position for abdominal measurements due 
to postural imbalance or congenital spinal deformities.9,22 
The study protocol was reviewed and approved by the 
Institutional Review Board of Yonsei(202507-HR-3966-
05), and all procedures were conducted in accordance with 
the principles of the Declaration of Helsinki. 

 
Data Collection 

1) General characteristics and data annotation 
Demographic characteristics, including age, sex, height 

and weight were collected. For anthropometric data, 
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conventional indices were collected, including BMI and 
tape-based measurements. BMI was calculated as weight 
(kg) divided by height squared (m²). WC was measured at 
the midpoint between the 12th rib and the iliac crest, and 
hip circumference at the widest part of the buttocks, both 
recorded to the nearest 0.1 cm following WHO guidelines.9 
The WHR was subsequently derived. Group comparisons 
were conducted to examine differences between participants 
with and without diabetes or musculoskeletal pain. Con-
tinuous variables were summarized as mean±standard 
deviation and compared using independent t-tests or Mann–
Whitney U tests following assessment of normality with the 
Shapiro–Wilk test. 

For outcome labeling, participants with diabetes were 
determined based on a documented physician diagnosis in 
medical records. Musculoskeletal pain status was labeled 
using a self-report questionnaire with a 10-cm visual 
analogue scale (VAS), where any score greater than zero 
was considered indicative of pain. Participants with a VAS 
score greater than 3 cm were classified into the pain group, 
whereas those with a score below 2 cm were classified into 
the non-pain group. These outcome labels were treated as 
binary target variables for subsequent model development.  

 
2) Smartphone inclinometer–based measurement of 

abdominal obesity 
Abdominal inclination measurements were performed 

using a smartphone (iPhone; Apple Inc., Cupertino, CA, 
USA) equipped with a single built-in IMU sensor and an 
inclinometer application (Angle Finder; JRSoftWorx, 
Berlin, Germany). All measurements were conducted by a 
trained examiner who was a health professional experienced 
in smartphone-based health monitoring. To ensure 
measurement consistency, the examiner underwent stand-
ardized training and followed a predefined protocol 
throughout the study. During the assessment, participants 
stood in a relaxed upright position with steady breathing, 
avoiding trunk bending or limb movement. For the upper 
abdomen (UA) angle, the examiner positioned the upper 
edge of the smartphone at the xiphoid process, maintaining 
full contact of the device’s bottom surface with the 
abdominal wall (Figure 1). For the lower abdomen (LA) 
angle, the device was placed at the midpoint between both 
anterior superior iliac spines under the same conditions 
(Figure 1). The smartphone was held steady for approx-
imately 2 seconds, after which the inclinometer application 
automatically recorded the angle. The smartphone was held 
steady for approximately 2 seconds during the measure-
ment, after which the inclinometer application automatically 
recorded the angle. Consistent with real-world clinical 

practice, where obesity-related variables such as WC and 
body weight are typically assessed only once, each 
abdominal inclination (UA and LA) was measured a single 
time for this study to enhance usability and reflect practical 
conditions in digital healthcare implementation. A pilot 
study involving 40 participants demonstrated good-to-
excellent within-day intra-rater reliability for the 
smartphone-derived inclination measures, with intraclass 
correlation coefficients of 0.95 for UA, 0.90 for LA, and 
0.94 for TA. 

 
Feature engineering 

Raw abdominal inclination data consisted of two primary 
angular features: UA and LA. To capture nonlinear and 
interaction effects, additional features (Figure 1) were 
derived, including the summated angle of UA and LA (TA), 
squared terms (UA², LA², TA²), and a multiplicative 
interaction term (UA×LA). Furthermore, ratio-based 
features were generated to reflect the relative contribution 
of local abdominal regions: UA/TA, LA/TA, UA/TA², 
LA/TA², and the normalized interaction term 
(UA×LA)/TA². These nonlinear features were included not 
only for mathematical completeness but also because 
squared terms (e.g., UA² and LA²) may capture the 
disproportionate anterior protrusion that occurs as visceral 
fat increases, reflecting curvature-related changes in 
abdominal shape. Ratio-based features were added to 
express the relative contribution of upper and lower 
abdominal segments, which may vary depending on 
regional fat distribution. 

 
Feature selection 

Stratified five-fold cross-validation was applied to 
partition the dataset into training and test subsets while 
preserving class balance. Because the number of diabetic or 
pain cases was limited, this approach maximized data 
efficiency. All preprocessing steps and the mRMR feature 
selection were performed only on the training portion of 
each fold and then applied to the corresponding test set to 
prevent data leakage. This approach ensures an unbiased 
estimation of model performance while identifying features 
that are most relevant to the target outcome and least 
redundant with one another.23 For each classification task 
(diabetes and musculoskeletal pain), the top five features 
from the mRMR ranking were retained for model training. 
The selected features for musculoskeletal pain were UA², 
LA², UA×LA, TA², and UA, while those for diabetes were 
TA², LA², UA×LA, UA², and TA. To mitigate variance due 
to the limited sample size, the mRMR selection was 
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repeated across folds, and the consistency of feature 
rankings was reviewed. 
 
Machine learning models 

To capture both nonlinear and interpretable decision 
boundaries for classifying diabetes and musculoskeletal pain, 
we used two tree-based algorithms (Light Gradient Boosting 
Machine (LightGBM) and Balanced Random Forest 
(BalancedRF)) along with one linear margin-based algorithm 

(Linear Support Vector Classifier with probability calibration 
(LSVC_PC)). To address class imbalance, algorithm-specific 
balancing strategies were applied (e.g., class_weight adjust-
ment in LightGBM and random undersampling in 
BalancedRF). These models were deliberately selected 
because they are well-suited for imbalanced and small-to-
moderate clinical datasets, providing complementary streng-
ths in handling nonlinear patterns, ensemble-based resam-
pling, and interpretable linear boundaries.  

 

 
Figure 1. Machine learning workflow for diabetes and musculoskeletal pain classification using smartphone 
inclinometer-based measurement of abdominal obesity. 
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1) LightGBM is a type of gradient boosting model that 
builds multiple small decision trees to make classifications. 
Unlike traditional tree models that grow evenly, LightGBM 
grows trees in a leaf-wise direction, meaning it expands only 
where improvement is most needed. This approach helps the 
model learn complex nonlinear relationships in the data while 
remaining fast and efficient, even with small sample sizes. In 
this study, class weights were adjusted so that the model 
could fairly learn from both common and rare cases, 
improving performance on imbalanced datasets.24 

2) BalancedRF is an improved version of the traditional 
random forest model that is designed to handle imbalanced 
datasets. It builds many decision trees, but unlike the 
standard approach, each tree is trained on a randomly 
balanced subset of the data. This helps prevent the model 
from being biased toward the more frequent class and 
allows it to better detect rare cases, such as participants with 
diabetes or musculoskeletal pain. Because of its built-in 
balancing mechanism and strong generalization ability, 
BalancedRF is particularly useful for small or unevenly 
distributed clinical datasets.25 

3) LSVC_PC is a machine learning model that separates 
two groups (e.g., presence or absence of disease) by finding 
the best linear boundary between them. It works well when 
the number of features is relatively small and the dataset is 
limited, as it focuses on maximizing the margin between 
classes rather than fitting every data point. However, a 
standard support vector machine does not provide 
probability estimates, which are necessary for evaluating 
model performance with metrics such as area under the 
curve. To address this, a probability calibration step (Platt 
scaling) was applied after training. This allows the model to 
output calibrated probabilities, making the results easier to 
interpret and compare with other models.25 

Each model was trained and evaluated using stratified 
five-fold cross-validation to preserve class proportions 
across folds and to minimize optimistic bias arising from 
the small number of diabetic participants. This procedure 
ensured that minority cases were distributed across all folds 
rather than repeatedly sampled within a single training 
subset, thereby reducing the risk of overfitting and 
providing a more stable estimate of generalizability. 
Additional resampling methods, such as SMOTE-Tomek 
were also tested but did not yield further improvement and 
were therefore not used. All models were implemented in 
Python (v3.10) using the scikit-learn, imbalanced-learn, and 
LightGBM packages. 

 
Model evaluation  

Evaluation metrics included accuracy, sensitivity, and 
specificity, representing overall, positive, and negative 
classification performance, respectively. The Matthews 
correlation coefficient (MCC) was also calculated, as it 
provides a balanced summary of performance even under 
class imbalance. Discriminative ability was quantified using 
the area under the receiver operating characteristic curve 
(ROC-AUC), while robustness to imbalance was assessed 
using the area under the precision–recall curve (PR-AUC), 
computed using the positive class as the target of interest. 
Because the dataset exhibited substantial class imbalance, 
PR-AUC was included as a metric, as it emphasizes 
performance on the minority (positive) class and is less 
influenced by the large number of true negatives. Confusion 
matrices were generated to visualize classification out-
comes. Final model selection for each target was based on 
mean ROC-AUC and PR-AUC across five folds, with 
preference given to models demonstrating superior discrim-
ination and consistent precision-recall performance. 

 
Model explainability 

To enhance interpretability of the final models, SHapley 
Additive exPlanations (SHAP) were applied to quantify the 
contribution of each feature to the model classifications. 
TreeSHAP or KernelSHAP analysis was performed only for 
the best-performing classifiers. For both models, SHAP 
values were computed on the test subsets of each cross-
validation fold using the models trained on their corre-
sponding training subsets, ensuring no information leakage. 
Global feature importance was visualized using SHAP 
beeswarm plots, which display the relative ranking and 
direction of feature influence across participants. This 
approach enabled identification of the most influential 
features and clarified whether higher or lower feature values 
increased the likelihood of classification into the positive 
outcome group. 

 

RESULTS 

Characteristics of the dataset 

Table 1 summarizes the demographic and anthropometric 
characteristics of the participants. Among all participants 
(n=105), 21 (20.0%) had diabetes, and 27 (25.7%) reported 
musculoskeletal pain. Participants with diabetes showed 
significantly higher weight (70.4±7.2 vs. 61.3±9.0 kg, 
p<0.01), BMI (28.5±2.7 vs. 24.9±3.0 kg/m², p<0.01), WC 
(98.2±7.0 vs. 87.3±9.3 cm, p<0.01), and WHR (0.98±0.05 
vs. 0.91±0.06, p<0.01) than those without diabetes. No 
significant differences were found in age or height between 
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groups. In contrast, participants with musculoskeletal pain 
were significantly older than those without pain (67.7±1.6 
vs. 64.6±3.2 years, p<0.01). However, no significant group 
differences were observed in weight, BMI, WC, or WHR 
(p>0.05). 

 
Classification performance of machine learning models 

The three machine learning models (LightGBM, Bal-
ancedRF, and LSVC_PC) exhibited distinct performance 
patterns for classifying diabetes and musculoskeletal pain 
based on mean results across five-fold cross-validation 
(Table 2). For diabetes classification, BalancedRF exhibited 
the most stable precision–recall performance and superior 
sensitivity (87%) while maintaining 82% specificity (Figure 
2 and 3). Although LightGBM achieved slightly higher 
accuracy (0.89 vs. 0.83), its recall performance was less 
consistent across folds. In contrast, BalancedRF demon-
strated more robust discrimination (ROC-AUC=0.93, PR-
AUC=0.84, MCC=0.61) compared with LightGBM (ROC-
AUC=0.91, PR-AUC=0.73, MCC=0.65) and LSVC_PC 
(ROC-AUC=0.83, PR-AUC=0.71, MCC=0.36). Therefore, 
BalancedRF was selected as the final model for diabetes 
classification. 

For musculoskeletal pain classification, LightGBM 
demonstrated the most balanced results across folds 
(accuracy=0.78, PR-AUC=0.56, MCC=0.42), outperform-
ing BalancedRF (accuracy=0.73, ROC-AUC=0.80, PR-
AUC=0.56, MCC=0.39) and LSVC_PC (accuracy=0.70, 
PR-AUC=0.43, MCC=0.28) (Table 2 and Figure 2). 
LightGBM correctly identified only 53% of musculo-

skeletal pain cases, showing limited sensitivity but high 
specificity (87%) (Figure 3). Despite its moderate sensi-
tivity, which indicates limited applicability for precise pain 
classification, LightGBM was selected as the final model 
for musculoskeletal pain classification based on its overall 
discrimination and precision–recall consistency. 

 
Feature importance and explainability 

Table 1. Participants characteristics                                                               (N = 105) 
 Without diabetes With diabetes Without pain With pain 

Number of participants 84 21 78 27 

Male/female (%) 21.40/78.60 57.10/42.9 34.60/65.40 11.10/88.90 
Age (yrs) 65.39±3.14 65.29±3.41 64.58±3.21 67.67±1.59† 

Weight (kg) 61.29±9.02 70.43±7.17* 64.27±8.87 59.81±10.25 

Height (cm) 156.92±6.94 157.39±8.07 158.35±7.17 153.16±5.58† 

BMI (kg/m2) 24.85±2.96 28.50±2.74* 25.61±2.94 25.48±4.09 

WC (cm) 87.31±9.30 98.23±7.03* 89.15±9.69 90.47±10.57 

WHR 0.91±0.06 0.98±0.05* 0.92±0.07 0.94±0.07 

UA (°) 16.20±3.09 20.47±9.52 20.84±8.53 14.65±9.79 
LA (°) 9.52±4.66 14.08±8.56 12.65±7.42 13.15±9.30 

TA (°) 25.72±10.46 34.55±14.97 33.49±13.35 27.80±16.49 

aMean±standard deviation was used for all variables except for the number of participants and gender ratio. 
*Significant difference between participants with and without diabetes (P<0.01). 
†Significant difference between participants with and without musculoskeletal pain (P<0.01). 
BMI, body mass index; WC, waist circumference; WHR, waist-to-hip ratio; UA, angle of upper abdomen; LA, angle of lower 
abdomen; TA, angle of total abdomen. 

 
Figure 2. Precision–recall curves for the final models 
classifying diabetes (Balanced random forest (Bal-
ancedRF)) and musculoskeletal pain (LightGBM) 
across five-fold cross-validation. 
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For diabetes classification using the BalancedRF model 
(Figure 4), SHAP analysis identified TA² and LA² as the 
most influential features, followed by UA×LA, UA², and 
TA. Higher values of TA² and LA² were associated with an 
increased probability of diabetes classification, whereas 
UA² and UA×LA provided complementary contributions. 

For musculoskeletal pain classification using the LightGBM 
model (Figure 4), SHAP analysis identified UA² as the most 
influential feature, followed by LA², UA×LA, TA², and UA. 
Higher values of UA² and LA² were generally associated with 
an increased probability of pain classification, whereas 
interaction and squared terms contributed to nuanced 
variations in classification outcomes. 

 
 

DISCUSSION 

This study demonstrated that smartphone-derived ab-
dominal tilt angles can serve as potential digital features for 
classifying both diabetes and musculoskeletal pain. The 
principal finding was that the LightGBM model for 
musculoskeletal pain achieved acceptable accuracy and 

specificity but suffered from low sensitivity, indicating that 
musculoskeletal pain could not be reliably distinguished 
using this feature set alone. In contrast, the BalancedRF 
model for diabetes showed robust discrimination with both 
high sensitivity and specificity. These results suggest that 
smartphone-based biomechanical features may have limited 
value as a stand-alone screening tool for musculoskeletal 
pain, but they hold promising potential for diabetes risk 
stratification in both community and clinical settings. 

Previous studies in digital health have primarily relied on 
conventional anthropometric indices such as body fat 
percentage, WC, or imaging-based measurements obtained 
through radiographic devices and 3D body scanners.26 
While these measures are clinically meaningful, they 
typically require specialized equipment and cannot be easily 
collected in daily life, limiting the real-world applicability 
of machine learning models developed from such data.26 In 
contrast, the smartphone-measured abdominal tilt angles 
used in the present study enable convenient and cost- 
effective data collection outside of clinical facilities. The 

Table 2. Performance metrics of classifiers 

Target Model Accuracy Sensitivity Specificity MCC ROC-AUC PR-AUC 

Diabetes 

BalancedRF 0.83 0.87 0.82 0.61 0.93 0.84 

LightGBM 0.89 0.72 0.93 0.65 0.91 0.73 

LSVC_PC 0.84 0.20 1.00 0.36 0.83 0.71 

Musculoskeletal 
pain 

LightGBM 0.78 0.53 0.87 0.42 0.83 0.56 

BalancedRF 0.73 0.63 0.77 0.39 0.80 0.56 

LSVC_PC 0.70 0.48 0.78 0.28 0.60 0.43 

Bold letters indicate the final model for each target. 
MCC, matthews correlation coefficient; ROC-AUC, area under the receiver operating characteristic curve; PR-AUC, area under the 
precision-recall curve; BalancedRF, balanced random forest; LSVC, linear support vector classifier with probability calibration. 

   
Figure 3. Confusion matrices for the final machine learning models, classifying diabetes (Balanced Random Forest 
(BalancedRF)) and musculoskeletal pain (LightGBM), across five-fold cross-validation. 
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feature-level interpretation further provides insight into how 
these smartphone-derived abdominal tilt patterns may be 
associated with distinct metabolic and biomechanical 
mechanisms. Consistent with previous studies identifying 
abdominal obesity as a major correlate of insulin resistance 
and diabetes risk, particularly among older adults,27,28 the 
SHAP analysis identified the squared total and lower 
abdominal tilt angles (TA² and LA²) as the strongest 
features of diabetes, supporting their potential use as digital 
indicators of central obesity (Figure 4). The greater 
contribution of squared terms compared with linear 
counterparts suggests a nonlinear relationship, where larger 
abdominal tilt angles capture disproportionately greater 
anterior protrusion that becomes more relevant at higher 

levels of central adiposity. This alignment with established 
biomechanical and metabolic evidence suggests the 
potential feasibility of posture-based features for noninva-
sive diabetes risk screening. In contrast, the musculoskeletal 
pain model showed weaker and less consistent associations, 
with higher upper (UA²) and lower abdominal tilt (LA²) 
values only modestly increasing pain probability (Figure 4). 
These findings align with prior evidence showing that 
central adiposity and body fat distribution have minimal 
influence on musculoskeletal pain thresholds, suggesting 
that obesity does not inherently enhance nociceptive 
sensitivity or increase chronic pain susceptibility.29 Overall, 
smartphone-based silhouette metrics using inclined angle of 
abdomen appear condition specific, appearing more 

 

 
Figure 4. SHAP beeswarm plots showing the relative importance and directional effects of abdominal tilt–based 
features in the final models for diabetes (top panel) and musculoskeletal pain classification (bottom panel). 
UA, upper abdomen tilt; LA, lower abdomen tilt; and TA, total abdominal tilt = UA+LA represent the angular 
inclination of the upper, lower, and whole abdominal regions, respectively. 
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informative for metabolic disorders such as diabetes than 
musculoskeletal pain. 

From a clinical and digital health perspective, the 
findings highlight the potential of smartphone-based 
postural metrics as scalable tools for chronic disease 
monitoring. Unlike conventional imaging or wearable 
systems, abdominal tilt can be directly measured using a 
smartphone inclinometer application, providing broad 
accessibility without additional devices or cost. Although 
standardization currently requires proper positioning and 
guidance, this measurement can be readily implemented in 
community or home-based settings. This approach aligns 
with the growing demand for self-assessable, noninvasive 
monitoring methods that integrate seamlessly into daily life. 
Incorporating abdominal tilt measurement into mobile 
applications may further enhance user engagement and 
adherence by delivering immediate visual feedback on 
abdominal obesity and metabolic risk, particularly for 
diabetes. Such user-centered design within diabetes care can 
strengthen perceived usefulness and trust in digital health 
technologies, thus promoting sustained engagement and 
supporting equitable access to preventive healthcare. 

This study has several limitations that should be 
acknowledged. First, the study sample was relatively small, 
and the number of participants with diabetes was 
particularly limited. To address this, stratified cross-
validation with a fully leakage-free pipeline was used to 
maximize data efficiency, although larger external cohorts 
will be needed to confirm generalizability. Second, the 
models were trained using static abdominal tilt angles, 
without accounting for temporal or contextual variations 
such as postprandial abdominal expansion or transient 
posture changes during daily activities. Third, although the 
smartphone inclinometer is less precise than research-grade 
IMU sensors, its measurements showed reasonable validity 
through moderate associations with WC and WHR. Lastly, 
this study did not include age or gender as features. 
Although age and sex are important factors related to 
diabetes and musculoskeletal pain, they were intentionally 
excluded from the models. Including these variables could 
have improved accuracy, but it would have prevented us 
from isolating the independent value of abdominal 
inclination features. In addition, achieving accurate classifi-
cation without requiring demographic inputs may enhance 
usability in real-world digital healthcare settings. Future 
research should extend beyond data acquisition to evaluate 
the feasibility of smartphone-based abdominal tilt 
monitoring as a digital therapeutic tool for individuals 
diagnosed with diabetes. In particular, periodic measure-
ments during physiologically dynamic states, such as empty 

stomach, pre-prandial, and post-prandial phases may 
provide meaningful insights into real time glycemic 
fluctuations and lifestyle related abdominal changes. Addi-
tionally, assessing the usability and engagement of such 
self-monitoring from a user experience perspective will be 
essential to determine its practicality and long-term 
effectiveness in diabetes self-management. 

 

CONCLUSION  

This study demonstrated that smartphone-derived ab-
dominal tilt angles serve as practical digital features for 
classifying diabetes more effectively than musculoskeletal 
pain in elderly individuals. Among the evaluated models, the 
BalancedRF achieved the best performance for diabetes 
classification, showing high sensitivity and specificity, 
whereas the LightGBM model for musculoskeletal pain 
exhibited limited sensitivity. These findings suggest that 
biomechanical features extracted from simple smartphone 
measurements are more robust for detecting metabolic risk 
than for identifying musculoskeletal pain. SHAP analysis 
revealed that squared lower and total abdominal tilt angles 
were key features of diabetes, reflecting mechanisms related 
to central obesity. Future research should explore the potential 
of smartphone-based abdominal tilt monitoring as a digital 
therapeutic tool for individuals with diabetes, particularly 
through periodic measurements during fasting and 
postprandial states, to assess dynamic glycemic responses and 
enhance user engagement in real-world settings. 

 

Key Points  

Question This study evaluated abdominal tilt angles meas-
ured by a smartphone inclinometer application as digital 
features for classifying diabetes and musculoskeletal pain in 
older adults. 

Findings Among three machine learning models, muscu-
loskeletal pain was not clearly classified, with LightGBM 
showing acceptable accuracy but low sensitivity, whereas 
diabetes was robustly classified by Balanced Random Forest 
with high sensitivity and specificity. 

Meaning These findings suggest that abdominal tilt angles 
measured by a smartphone inclinometer provide a low-cost 
and scalable method for diabetes risk assessment, supporting 
convenient screening in community or home-based health-
care settings. 
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