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Smartphone Inclinometer—Measured Abdominal Tilt Angles for
Classifying Diabetes and Musculoskeletal Pain in Older Adults:

A Machine Learning Study
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Background Abdominal obesity measures such as waist circumference and waist-to-hip ratio
have been shown to relate more closely to diabetes and musculoskeletal pain than body mass
index, but conventional tape-based measurements are not easily scalable. A smartphone
inclinometer application provides a practical alternative by capturing abdominal tilt angles that

are automatically computed and easily reusable.

Purpose This study assessed whether abdominal tilt angles measured using a smartphone
inclinometer could serve as digital features for classifying diabetes and musculoskeletal pain in

older adults using machine learning.

Methods In 105 older adults, 12 abdominal inclination features were extracted from upper and
lower tilt angles and refined by minimum redundancy maximum relevance selection. Three
models (Light Gradient Boosting Machine (LightGBM), Balanced Random Forest (BalancedRF),
and Linear Support Vector Classifier with Probability Calibration) were trained and evaluated

with five-fold cross-validation.

Results BalancedRF achieved the best performance for diabetes classification (accuracy = 0.83,
ROC-AUC = 0.93, PR-AUC = 0.84), with sensitivity 87% and specificity 82%. For
musculoskeletal pain, LightGBM achieved moderate performance (accuracy = 0.78, ROC-AUC =
0.83, PR-AUC = 0.56) but sensitivity was limited (53%) despite high specificity (87%). SHAP
analysis highlighted the squared terms of the lower and total abdominal angles as key features for

diabetes, while associations were weaker for pain.

Conclusions Abdominal tilt angles measured by a smartphone inclinometer represent feasible,
noninvasive digital features for diabetes risk stratification, although utility for musculoskeletal
pain classification is limited. Future work should validate these findings in larger and longitudinal
cohorts and explore real-world integration of smartphone posture monitoring for digital health

applications.

Key words Abdominal obesity; Diabetes; Digital feature; Machine learning; Musculoskeletal

pain; Smartphone inclinometer application.
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have an elevated risk of developing musculoskeletal disor-

INTRODUCTION

ders and that the interaction between diabetes and obesity

Recent evidence indicates that older adults with diabetes further exacerbates this risk."> These findings highlight the
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need to consider both body mass index (BMI) and overall
adiposity when managing diabetes and musculoskeletal pain
in older populations.>* Accumulating evidence also
suggests that abdominal obesity, measured by waist cir-
cumference (WC) and waist-to-hip ratio (WHR), is more
strongly associated with metabolic and musculoskeletal
disorders than body mass index (BMI), underscoring the
clinical importance of assessing central adiposity.>® How-
ever, current approaches often rely on manual tape
measurements or specialized equipment, which limits their
feasibility in routine community or primary care settings
because the data are not digitally recorded or integrated into
healthcare systems.5$

Previous research has employed conventional anthro-
pometric indices such as BMI, WC, and WHR, or imaging
modalities including MRI, CT, and DEXA to assess obesity-
related risks.>!" While informative, these methods require
trained personnel or expensive equipment, which reduces
accessibility in rural areas and small healthcare centers.'>!3
Machine learning approaches have also been explored for
chronic disease classification; however, many models rely
on data sources that are not easily obtainable in real-world
environments, which has contributed to their limited
adoption in clinical practice.'*!> Although WC measured by
tape is relatively simple to collect, such data are rarely
stored in a systematic or digitalized format, making them
less practical for large-scale or longitudinal, data-driven
applications.'® As highlighted by recent critiques in digital
health research, developing classification models based on
features that are both realistically collectable and easily
storable is essential for achieving clinical applicability and
real-world impact.!*

Because smartphones are already the most widely
available and user-friendly digital devices, Inertial Meas-
urement Unit (IMU)-based measurements can be performed
with minimal burden, while data are automatically
collected, stored, and reused for repeated assessments.!”
Recent studies have demonstrated that smartphone cameras
combined with machine learning can objectively estimate
total and abdominal fat mass from 2D body silhouette
images in adults.®'%!'® However, these approaches require
participants to wear form-fitting clothing and maintain
specific standing postures, often with assistance or a tripod
to ensure stable imaging conditions, which may pose
practical challenges for older adults with limited digital
literacy in real-world settings.!” IMU sensors embedded in
smartphones have shown potential as an alternative for
obesity assessment, but a previous study mainly analyzed
gait patterns using devices worn at the waist, making it
difficult to directly measure abdominal obesity.?’ Prior
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research has demonstrated that smartphone inclinometer
applications, which calculate tilt angles from the device’s
built-in IMU sensor data, can reliably capture spinal
alignment and deformity, as well as range of motion in
major joints.?! Extending this evidence, the present study
examines whether abdominal inclination features measured
using a smartphone inclinometer can serve as novel digital
features for classifying diabetes and musculoskeletal pain in
older adults.

This study examined whether smartphone inclinometer—
measured abdominal inclination features can classify
diabetes and musculoskeletal pain in older adults, and
explored key contributing features
artificial intelligence (XAI). We hypothesized that (1)
simple

using explainable

inclination features extracted from a single
smartphone placement would provide sufficient discrimi-
natory power, and (2) XAI would reveal -clinically
interpretable patterns that align with known biomechanical
and metabolic characteristics. By validating a low-cost,
casy-to-measure, and scalable assessment method, this
study aims to bridge the gap between rapidly evolving
machine-learning techniques and their practical deployment
in community and primary care settings, thereby supporting
early screening and personalized management in aging

populations.

METHODS

Study design and participants

This cross-sectional observational study included 105
community-dwelling older adults aged 60 years or older,
who were recruited from local community health programs
in Korea. All participants provided written informed
consent prior to enrollment. Participants were excluded if
they met any of the following criteria: (1) underweight
(BMI<18.5 kg/m?) or obesity class III (BMI>40 kg/m?); (2)
medical conditions affecting fat distribution (e.g., Cushing’s
syndrome, metabolic syndrome); (3) inability to maintain an
upright standing position for abdominal measurements due
to postural imbalance or congenital spinal deformities.>??
The study protocol was reviewed and approved by the
Institutional Review Board of Yonsei(202507-HR-3966-
05), and all procedures were conducted in accordance with
the principles of the Declaration of Helsinki.

Data Collection

1) General characteristics and data annotation
Demographic characteristics, including age, sex, height

and weight were collected. For anthropometric data,
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conventional indices were collected, including BMI and
tape-based measurements. BMI was calculated as weight
(kg) divided by height squared (m?). WC was measured at
the midpoint between the 12th rib and the iliac crest, and
hip circumference at the widest part of the buttocks, both
recorded to the nearest 0.1 cm following WHO guidelines.’
The WHR was subsequently derived. Group comparisons
were conducted to examine differences between participants
with and without diabetes or musculoskeletal pain. Con-
tinuous variables were summarized as meantstandard
deviation and compared using independent t-tests or Mann—
Whitney U tests following assessment of normality with the
Shapiro—-Wilk test.

For outcome labeling, participants with diabetes were
determined based on a documented physician diagnosis in
medical records. Musculoskeletal pain status was labeled
using a self-report questionnaire with a 10-cm visual
analogue scale (VAS), where any score greater than zero
was considered indicative of pain. Participants with a VAS
score greater than 3 cm were classified into the pain group,
whereas those with a score below 2 cm were classified into
the non-pain group. These outcome labels were treated as

binary target variables for subsequent model development.

2) Smartphone inclinometer—based measurement of
abdominal obesity

Abdominal inclination measurements were performed
using a smartphone (iPhone; Apple Inc., Cupertino, CA,
USA) equipped with a single built-in IMU sensor and an
JRSoftWorx,
Berlin, Germany). All measurements were conducted by a

inclinometer application (Angle Finder;
trained examiner who was a health professional experienced
in smartphone-based health monitoring. To ensure
measurement consistency, the examiner underwent stand-
ardized training and followed a predefined protocol
throughout the study. During the assessment, participants
stood in a relaxed upright position with steady breathing,
avoiding trunk bending or limb movement. For the upper
abdomen (UA) angle, the examiner positioned the upper
edge of the smartphone at the xiphoid process, maintaining
full contact of the device’s bottom surface with the
abdominal wall (Figure 1). For the lower abdomen (LA)
angle, the device was placed at the midpoint between both
anterior superior iliac spines under the same conditions
(Figure 1). The smartphone was held steady for approx-
imately 2 seconds, after which the inclinometer application
automatically recorded the angle. The smartphone was held
steady for approximately 2 seconds during the measure-
ment, after which the inclinometer application automatically

recorded the angle. Consistent with real-world clinical
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practice, where obesity-related variables such as WC and
body weight are typically assessed only once, each
abdominal inclination (UA and LA) was measured a single
time for this study to enhance usability and reflect practical
conditions in digital healthcare implementation. A pilot
study involving 40 participants demonstrated good-to-
excellent within-day intra-rater reliability for the
smartphone-derived inclination measures, with intraclass
correlation coefficients of 0.95 for UA, 0.90 for LA, and

0.94 for TA.

Feature engineering

Raw abdominal inclination data consisted of two primary
angular features: UA and LA. To capture nonlinear and
interaction effects, additional features (Figure 1) were
derived, including the summated angle of UA and LA (TA),
squared terms (UAZ LA? TA?), and a multiplicative
term (UAXLA).
features were generated to reflect the relative contribution
of local abdominal regions: UA/TA, LA/TA, UA/TA?
LA/TA?2, and the
(UAXLA)/TA2 These nonlinear features were included not
only for mathematical completeness but also because

interaction Furthermore, ratio-based

normalized interaction term

squared terms (e.g., UA? and LA? may capture the
disproportionate anterior protrusion that occurs as visceral
fat increases, reflecting curvature-related changes in
abdominal shape. Ratio-based features were added to
express the relative contribution of upper and lower
abdominal segments, which may vary depending on

regional fat distribution.

Feature selection

Stratified five-fold cross-validation was applied to
partition the dataset into training and test subsets while
preserving class balance. Because the number of diabetic or
pain cases was limited, this approach maximized data
efficiency. All preprocessing steps and the mRMR feature
selection were performed only on the training portion of
each fold and then applied to the corresponding test set to
prevent data leakage. This approach ensures an unbiased
estimation of model performance while identifying features
that are most relevant to the target outcome and least
redundant with one another.? For each classification task
(diabetes and musculoskeletal pain), the top five features
from the mRMR ranking were retained for model training.
The selected features for musculoskeletal pain were UA?,
LA?, UAXLA, TA?, and UA, while those for diabetes were
TA?, LA?, UAXLA, UA?, and TA. To mitigate variance due
to the limited sample size, the mRMR selection was

Journal of Musculoskeletal Science and Technology
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1. Data collection

o

<3 UA+ LA =TA (50%)
% LA

3. Feature Extraction & Engineering (12)
# Primary features (2): UA and LA

# Summated feature (1): UA + LA (=TA)

4. Feature selection

# Stratified five-fold cross-validation

# Feature selection using training data
: mRMR
5. Model Development
- LightGBM
- Balanced Random Forest (RF)
- Linear SVC with probability calibration

Smartphone Inclinometer—Based
Measurement of Abdominal Obesity
(N =105)

Inclined Angle of upper and lower
abdomen (UA and LA)

# Squared features (3) : UA2, LA?, TA?

# Interaction features (2) : UA x LA, (UA x LA)/TA?
# Relative contribution of local abdominal region) (4) : UA/TA, LA/TA, UA/TA? LA/TA?

# Selected features
- Diabetes: TA2, LA2 UA x LA, UA2%, TA
- Musculoskeletal pain: UA?, LA2, UA x LA, TA?, UA

Diabetes (BalancedRE)
Accuracy 83%, ROC-AUC 0.93, PR-AUC 0.84

Muscusloskeletal pain(LiéhtGBM)
Accuracy 78%, ROC-AUC 0.83, PR-AUC 0.56

2. Labeling
1) With and Without diabetes

2) With and Without
musculoskeletal pain

6. Model Evaluation and Explainability

T
u s e 3

pm————

Machine Learning Classification of Diabetes
Using Smartphone Inclinometer-based Measurement of Abdominal Obesity

Nm————

inclinometer-based measurement of abdominal obesity.

Figure 1. Machine learning workflow for diabetes and musculoskeletal pain classification using smartphone

repeated across folds, and the consistency of feature

rankings was reviewed.

Machine learning models

To capture both nonlinear and interpretable decision
boundaries for classifying diabetes and musculoskeletal pain,
we used two tree-based algorithms (Light Gradient Boosting
Machine (LightGBM) and Balanced Random Forest
(BalancedRF)) along with one linear margin-based algorithm

Journal of Musculoskeletal Science and Technology

(Linear Support Vector Classifier with probability calibration
(LSVC_PC)). To address class imbalance, algorithm-specific
balancing strategies were applied (e.g., class_weight adjust-
in LightGBM and
BalancedRF). These models were deliberately selected

ment random undersampling in
because they are well-suited for imbalanced and small-to-
moderate clinical datasets, providing complementary streng-
ths in handling nonlinear patterns, ensemble-based resam-

pling, and interpretable linear boundaries.
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1) LightGBM is a type of gradient boosting model that
builds multiple small decision trees to make classifications.
Unlike traditional tree models that grow evenly, LightGBM
grows trees in a leaf-wise direction, meaning it expands only
where improvement is most needed. This approach helps the
model learn complex nonlinear relationships in the data while
remaining fast and efficient, even with small sample sizes. In
this study, class weights were adjusted so that the model
could fairly learn from both common and rare cases,
improving performance on imbalanced datasets.”*

2) BalancedRF is an improved version of the traditional
random forest model that is designed to handle imbalanced
datasets. It builds many decision trees, but unlike the
standard approach, each tree is trained on a randomly
balanced subset of the data. This helps prevent the model
from being biased toward the more frequent class and
allows it to better detect rare cases, such as participants with
diabetes or musculoskeletal pain. Because of its built-in
balancing mechanism and strong generalization ability,
BalancedRF is particularly useful for small or unevenly
distributed clinical datasets.?

3) LSVC PC is a machine learning model that separates
two groups (e.g., presence or absence of disease) by finding
the best linear boundary between them. It works well when
the number of features is relatively small and the dataset is
limited, as it focuses on maximizing the margin between
classes rather than fitting every data point. However, a
standard support vector machine does not provide
probability estimates, which are necessary for evaluating
model performance with metrics such as area under the
curve. To address this, a probability calibration step (Platt
scaling) was applied after training. This allows the model to
output calibrated probabilities, making the results easier to
interpret and compare with other models.?

Each model was trained and evaluated using stratified
five-fold cross-validation to preserve class proportions
across folds and to minimize optimistic bias arising from
the small number of diabetic participants. This procedure
ensured that minority cases were distributed across all folds
rather than repeatedly sampled within a single training
subset, thereby reducing the risk of overfitting and
providing a more stable estimate of generalizability.
Additional resampling methods, such as SMOTE-Tomek
were also tested but did not yield further improvement and
were therefore not used. All models were implemented in
Python (v3.10) using the scikit-learn, imbalanced-learn, and
LightGBM packages.

Model evaluation
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Evaluation metrics included accuracy, sensitivity, and
specificity, representing overall, positive, and negative
classification performance, respectively. The Matthews
correlation coefficient (MCC) was also calculated, as it
provides a balanced summary of performance even under
class imbalance. Discriminative ability was quantified using
the area under the receiver operating characteristic curve
(ROC-AUC), while robustness to imbalance was assessed
using the area under the precision—recall curve (PR-AUC),
computed using the positive class as the target of interest.
Because the dataset exhibited substantial class imbalance,
PR-AUC was included as a metric, as it emphasizes
performance on the minority (positive) class and is less
influenced by the large number of true negatives. Confusion
matrices were generated to visualize classification out-
comes. Final model selection for each target was based on
mean ROC-AUC and PR-AUC across five folds, with
preference given to models demonstrating superior discrim-

ination and consistent precision-recall performance.

Model explainability

To enhance interpretability of the final models, SHapley
Additive exPlanations (SHAP) were applied to quantify the
contribution of each feature to the model classifications.
TreeSHAP or KernelSHAP analysis was performed only for
the best-performing classifiers. For both models, SHAP
values were computed on the test subsets of each cross-
validation fold using the models trained on their corre-
sponding training subsets, ensuring no information leakage.
Global feature importance was visualized using SHAP
beeswarm plots, which display the relative ranking and
direction of feature influence across participants. This
approach enabled identification of the most influential
features and clarified whether higher or lower feature values
increased the likelihood of classification into the positive

outcome group.

RESULTS

Characteristics of the dataset

Table 1 summarizes the demographic and anthropometric
characteristics of the participants. Among all participants
(n=105), 21 (20.0%) had diabetes, and 27 (25.7%) reported
musculoskeletal pain. Participants with diabetes showed
significantly higher weight (70.4+7.2 vs. 61.349.0 kg,
p<0.01), BMI (28.5£2.7 vs. 24.94£3.0 kg/m?, p<0.01), WC
(98.2£7.0 vs. 87.3+9.3 cm, p<0.01), and WHR (0.98+0.05
vs. 0.91£0.06, p<0.01) than those without diabetes. No

significant differences were found in age or height between
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Table 1. Participants characteristics (N =105)
Without diabetes With diabetes Without pain With pain
Number of participants 84 21 78 27

Male/female (%) 21.40/78.60 57.10/42.9 34.60/65.40 11.10/88.90
Age (yrs) 65.39+3.14 65.29+3.41 64.58+3.21 67.67£1.59°
Weight (kg) 61.29+9.02 70.43£7.17" 64.27+8.87 59.81+10.25
Height (cm) 156.92+6.94 157.39+8.07 158.35+7.17 153.16+5.587

BMI (kg/m?) 24.85+2.96 28.50+2.74" 25.61+£2.94 25.48+4.09
WC (cm) 87.31+9.30 98.23+7.03" 89.15+9.69 90.47+10.57

WHR 0.91+0.06 0.98+0.05 0.92+0.07 0.94+0.07

UA (°) 16.20+3.09 20.47+9.52 20.84+8.53 14.65+9.79

LA (°) 9.52+4.66 14.08+8.56 12.65+7.42 13.15£9.30
TA (°) 25.72+10.46 34.55+14.97 33.49+13.35 27.80+16.49

*Mean+tstandard deviation was used for all variables except for the number of participants and gender ratio.

*Significant difference between participants with and without diabetes (P<0.01).

fSignificant difference between participants with and without musculoskeletal pain (P<0.01).

BMI, body mass index; WC, waist circumference; WHR, waist-to-hip ratio; UA, angle of upper abdomen; LA, angle of lower

abdomen; TA, angle of total abdomen.

groups. In contrast, participants with musculoskeletal pain
were significantly older than those without pain (67.7+1.6
vs. 64.6£3.2 years, p<0.01). However, no significant group
differences were observed in weight, BMI, WC, or WHR
([»>0.05).

Classification performance of machine learning models

The three machine learning models (LightGBM, Bal-
ancedRF, and LSVC_PC) exhibited distinct performance
patterns for classifying diabetes and musculoskeletal pain
based on mean results across five-fold cross-validation
(Table 2). For diabetes classification, BalancedRF exhibited
the most stable precision—recall performance and superior
sensitivity (87%) while maintaining 82% specificity (Figure
2 and 3). Although LightGBM achieved slightly higher
accuracy (0.89 vs. 0.83), its recall performance was less
consistent across folds. In contrast, BalancedRF demon-
strated more robust discrimination (ROC-AUC=0.93, PR-
AUC=0.84, MCC=0.61) compared with LightGBM (ROC-
AUC=0.91, PR-AUC=0.73, MCC=0.65) and LSVC PC
(ROC-AUC=0.83, PR-AUC=0.71, MCC=0.36). Therefore,
BalancedRF was selected as the final model for diabetes
classification.

For musculoskeletal pain classification, LightGBM
demonstrated the most balanced results across folds
(accuracy=0.78, PR-AUC=0.56, MCC=0.42), outperform-
ing BalancedRF (accuracy=0.73, ROC-AUC=0.80, PR-
AUC=0.56, MCC=0.39) and LSVC PC (accuracy=0.70,
PR-AUC=0.43, MCC=0.28) (Table 2 and Figure 2).
LightGBM correctly identified only 53% of musculo-
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Musculoskeletal pain vs Diabetes: Precision-Recall
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—— Musculoskeletal pain (LightGBM) (PR AUC=0.56 + 0.21)
0.2 Diabetes (BalancedRF) (PR AUC=0.84 + 0.06)

0.0 02 04 0.6 08 10
Recall
Figure 2. Precision—recall curves for the final models
classifying diabetes (Balanced random forest (Bal-
ancedRF)) and musculoskeletal pain (LightGBM)
across five-fold cross-validation.

skeletal pain cases, showing limited sensitivity but high
specificity (87%) (Figure 3). Despite its moderate sensi-
tivity, which indicates limited applicability for precise pain
classification, LightGBM was selected as the final model
for musculoskeletal pain classification based on its overall
discrimination and precision—recall consistency.

Feature importance and explainability

www.jkema.org




Smartphone Inclinometer—Measured Abdominal Tilt Angles and Disease Prediction

177

Diabetes (BalancedRF_5-Fold CV, %)

Negative (0)

True label

Positive (1)

Negative (0)
Predicted label

Positive (1)

Figure 3. Confusion matrices for the final machine learning models, classifying diabetes (Balanced Random Forest
(BalancedRF)) and musculoskeletal pain (LightGBM), across five-fold cross-validation.

Musculoskeltal pain (LightGBM_5-Fold CV, %)

Negative (0)

True label

Positive (1)

Negative (0) Positive (1)
Predicted label

Table 2. Performance metrics of classifiers

Target Model Accuracy  Sensitivity  Specificity MCC ROC-AUC PR-AUC
BalancedRF 0.83 0.87 0.82 0.61 0.93 0.84
Diabetes LightGBM 0.89 0.72 0.93 0.65 0.91 0.73
LSVC PC 0.84 0.20 1.00 0.36 0.83 0.71
LightGBM 0.78 0.53 0.87 0.42 0.83 0.56

Musculoskeletal
i BalancedRF 0.73 0.63 0.77 0.39 0.80 0.56
pain

LSVC_PC 0.70 0.48 0.78 0.28 0.60 0.43

Bold letters indicate the final model for each target.

MCC, matthews correlation coefficient; ROC-AUC, area under the receiver operating characteristic curve; PR-AUC, area under the

precision-recall curve; BalancedRF, balanced random forest; LSVC, linear support vector classifier with probability calibration.

For diabetes classification using the BalancedRF model
(Figure 4), SHAP analysis identified TA? and LA? as the
most influential features, followed by UAXLA, UA2?, and
TA. Higher values of TA? and LA? were associated with an
increased probability of diabetes classification, whereas
UA? and UAXLA provided complementary contributions.

For musculoskeletal pain classification using the Light GBM
model (Figure 4), SHAP analysis identified UA? as the most
influential feature, followed by LA?, UAXLA, TA? and UA.
Higher values of UA? and LA? were generally associated with
an increased probability of pain classification, whereas
interaction and squared terms contributed to nuanced
variations in classification outcomes.

DISCUSSION

This study demonstrated that smartphone-derived ab-
dominal tilt angles can serve as potential digital features for
classifying both diabetes and musculoskeletal pain. The
principal finding was that the LightGBM model for
musculoskeletal pain achieved acceptable accuracy and

Vol. 9, No. 2, Dec. 2025

specificity but suffered from low sensitivity, indicating that
musculoskeletal pain could not be reliably distinguished
using this feature set alone. In contrast, the BalancedRF
model for diabetes showed robust discrimination with both
high sensitivity and specificity. These results suggest that
smartphone-based biomechanical features may have limited
value as a stand-alone screening tool for musculoskeletal
pain, but they hold promising potential for diabetes risk
stratification in both community and clinical settings.
Previous studies in digital health have primarily relied on
conventional anthropometric indices such as body fat
percentage, WC, or imaging-based measurements obtained
through radiographic devices and 3D body scanners.?
While these measures are clinically meaningful, they
typically require specialized equipment and cannot be easily
collected in daily life, limiting the real-world applicability
of machine learning models developed from such data.?’ In
contrast, the smartphone-measured abdominal tilt angles
used in the present study enable convenient and cost-

effective data collection outside of clinical facilities. The

Journal of Musculoskeletal Science and Technology
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Figure 4. SHAP beeswarm plots showing the relative importance and directional effects of abdominal tilt—based
features in the final models for diabetes (top panel) and musculoskeletal pain classification (bottom panel).
UA, upper abdomen tilt; LA, lower abdomen tilt; and TA, total abdominal tilt = UA+LA represent the angular
inclination of the upper, lower, and whole abdominal regions, respectively.

feature-level interpretation further provides insight into how
these smartphone-derived abdominal tilt patterns may be
associated with distinct metabolic and biomechanical
mechanisms. Consistent with previous studies identifying
abdominal obesity as a major correlate of insulin resistance
and diabetes risk, particularly among older adults,?”-*® the
SHAP analysis identified the squared total and lower
abdominal tilt angles (TA? and LA?) as the strongest
features of diabetes, supporting their potential use as digital
indicators of central obesity (Figure 4). The greater
contribution of squared terms compared with linear
counterparts suggests a nonlinear relationship, where larger
abdominal tilt angles capture disproportionately greater
anterior protrusion that becomes more relevant at higher

Journal of Musculoskeletal Science and Technology

levels of central adiposity. This alignment with established
the

potential feasibility of posture-based features for noninva-

biomechanical and metabolic evidence suggests
sive diabetes risk screening. In contrast, the musculoskeletal
pain model showed weaker and less consistent associations,
with higher upper (UA?) and lower abdominal tilt (LA?)
values only modestly increasing pain probability (Figure 4).
These findings align with prior evidence showing that
central adiposity and body fat distribution have minimal
influence on musculoskeletal pain thresholds, suggesting
that obesity does not inherently enhance nociceptive
sensitivity or increase chronic pain susceptibility.?? Overall,
smartphone-based silhouette metrics using inclined angle of
condition specific,

abdomen appear appearing more
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informative for metabolic disorders such as diabetes than
musculoskeletal pain.

From a clinical and digital health perspective, the
highlight the potential of smartphone-based
postural metrics as scalable tools for chronic disease

findings

monitoring. Unlike conventional imaging or wearable
systems, abdominal tilt can be directly measured using a
smartphone inclinometer application, providing broad
accessibility without additional devices or cost. Although
standardization currently requires proper positioning and
guidance, this measurement can be readily implemented in
community or home-based settings. This approach aligns
with the growing demand for self-assessable, noninvasive
monitoring methods that integrate seamlessly into daily life.
Incorporating abdominal tilt measurement into mobile
applications may further enhance user engagement and
adherence by delivering immediate visual feedback on
abdominal obesity and metabolic risk, particularly for
diabetes. Such user-centered design within diabetes care can
strengthen perceived usefulness and trust in digital health
technologies, thus promoting sustained engagement and
supporting equitable access to preventive healthcare.

This study has several limitations that should be
acknowledged. First, the study sample was relatively small,
and the number of participants with diabetes was
particularly limited. To address this, stratified cross-
validation with a fully leakage-free pipeline was used to
maximize data efficiency, although larger external cohorts
will be needed to confirm generalizability. Second, the
models were trained using static abdominal tilt angles,
without accounting for temporal or contextual variations
such as postprandial abdominal expansion or transient
posture changes during daily activities. Third, although the
smartphone inclinometer is less precise than research-grade
IMU sensors, its measurements showed reasonable validity
through moderate associations with WC and WHR. Lastly,
this study did not include age or gender as features.
Although age and sex are important factors related to
diabetes and musculoskeletal pain, they were intentionally
excluded from the models. Including these variables could
have improved accuracy, but it would have prevented us
from isolating the independent value of abdominal
inclination features. In addition, achieving accurate classifi-
cation without requiring demographic inputs may enhance
usability in real-world digital healthcare settings. Future
research should extend beyond data acquisition to evaluate
the feasibility of
monitoring as a digital therapeutic tool for individuals

smartphone-based abdominal tilt

diagnosed with diabetes. In particular, periodic measure-
ments during physiologically dynamic states, such as empty

Vol. 9, No. 2, Dec. 2025

stomach, pre-prandial, and post-prandial phases may
provide meaningful insights into real time glycemic
fluctuations and lifestyle related abdominal changes. Addi-
tionally, assessing the usability and engagement of such
self-monitoring from a user experience perspective will be
essential to determine its practicality and long-term

effectiveness in diabetes self-management.

CONCLUSION

This study demonstrated that smartphone-derived ab-
dominal tilt angles serve as practical digital features for
classifying diabetes more effectively than musculoskeletal
pain in elderly individuals. Among the evaluated models, the
BalancedRF achieved the best performance for diabetes
classification, showing high sensitivity and specificity,
whereas the LightGBM model for musculoskeletal pain
exhibited limited sensitivity. These findings suggest that
biomechanical features extracted from simple smartphone
measurements are more robust for detecting metabolic risk
than for identifying musculoskeletal pain. SHAP analysis
revealed that squared lower and total abdominal tilt angles
were key features of diabetes, reflecting mechanisms related
to central obesity. Future research should explore the potential
of smartphone-based abdominal tilt monitoring as a digital
therapeutic tool for individuals with diabetes, particularly
through periodic measurements during fasting and
postprandial states, to assess dynamic glycemic responses and

enhance user engagement in real-world settings.

Key Points

Question This study evaluated abdominal tilt angles meas-
ured by a smartphone inclinometer application as digital
features for classifying diabetes and musculoskeletal pain in
older adults.

Findings Among three machine learning models, muscu-
loskeletal pain was not clearly classified, with LightGBM
showing acceptable accuracy but low sensitivity, whereas
diabetes was robustly classified by Balanced Random Forest
with high sensitivity and specificity.

Meaning These findings suggest that abdominal tilt angles
measured by a smartphone inclinometer provide a low-cost
and scalable method for diabetes risk assessment, supporting
convenient screening in community or home-based health-
care settings.
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