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INTRODUCTION 

Logistics service workers face elevated injury rates of 5.5 
per 100 full-time equivalent workers compared to 2.7 
industry average, with musculoskeletal disorders compris-

ing 30% of all injuries.1,2 These workers traverse 
approximately 8 kilometers per shift while handling diverse 
package loads, creating substantial demands on postural 
control systems.3 Ankle-related injuries account for 23% of 
logistics worker injuries, with an average of 20 lost 
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Background Logistics service workers face elevated injury rates, with ankle-related incidents 
comprising 23% of workplace injuries. Traditional binary foot posture classifications may 
oversimplify the complex biomechanical relationships affecting dynamic balance performance in 
occupational settings. 
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Purpose To apply unsupervised machine learning clustering to identify distinct foot posture 
phenotypes among logistics service workers and compare dynamic balance performance between 
identified clusters using the Y-Balance Test. 

Study design Cross-sectional observational study 

Methods A total of 112 logistics service workers were analyzed using K-means clustering based 
on age, body mass index, work duration, navicular drop, and resting calcaneal stance position. 
Silhouette score analysis determined optimal cluster number. Dynamic balance was assessed 
using the Y-Balance Test, measuring reach distances in anterior, posteromedial, and posterolateral 
directions. 

Results Four distinct phenotypes emerged: rearfoot valgus-dominant pronated (n=22), midfoot 
collapse-dominant pronated (n=32), age-related (n=23), and supinated (n=35) foot types. 
Significant differences in dynamic balance performance were observed in the posterolateral 
direction (F=3.900, p=0.011). The supinated phenotype demonstrated superior posterolateral 
reach performance (77.76±13.63%) compared to midfoot collapse-dominant (66.18±16.37%, 
p=0.003) and age-related phenotypes (67.78±14.97%, p=0.018). 

Conclusions Unsupervised machine learning successfully identified naturally occurring foot 
posture phenotypes with distinct dynamic balance characteristics. Midfoot collapse-dominant 
pronation demonstrated greater balance impairments than rearfoot valgus patterns, supporting the 
implementation of phenotype-specific interventions for workplace injury prevention in logistics 
workers. 

Key words Dynamic balance; Foot posture; Machine learning; K-means 
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workdays per incident, emphasizing the critical need for 
effective risk assessment strategies.4 

Foot posture assessment has traditionally relied on binary 
classifications of pronated versus supinated feet, yet this 
approach oversimplifies the complex biomechanical rela-
tionships between different anatomical segments.3,5,6 
Rearfoot alignment, assessed through resting calcaneal 
stance position (RCSP), reflects weight distribution patterns 
and influences frontal plane stability through subtalar joint 
control.7,8 Conversely, midfoot function, evaluated through 
navicular drop measurements, indicates medial longitudinal 
arch mobility and contributes to shock absorption during 
weight-bearing activities.9 Recent evidence demonstrates 
that these anatomical regions contribute differentially to 
postural control, with rearfoot valgus ≥7 degrees impairing 
dynamic platform stability while midfoot mobility affects 
proprioceptive feedback mechanisms.7,10 

The Y-Balance Test has emerged as a validated dynamic 
balance assessment tool for occupational populations. 
Studies in logistics workers have established population-
specific cut-off values ranging from 85.99% to 96.98% of 
limb length for composite scores, with posteromedial reach 
direction demonstrating strongest discriminative ability for 
identifying balance deficits.11 Construction worker research 
has similarly demonstrated that age, navicular drop, and leg 
length collectively predict 21-23% of dynamic balance 
variance, with foot posture characteristics serving as 
significant biomechanical determinants.12 

Traditional analytical approaches using predetermined 
foot type categories may fail to capture the multidimen-
sional nature of foot posture characteristics. Unsupervised 
machine learning clustering techniques offer the potential to 
identify naturally occurring phenotypic patterns within 
complex datasets without imposing preconceived classifi-
cations.13 Recent applications of k-means and hierarchical 
clustering to biomechanical data have successfully 
identified distinct movement patterns that correlate with 
clinical outcomes and functional performance measures.13,14 
These data-driven approaches may reveal foot posture 
combinations that extend beyond traditional pronated-
supinated classifications and demonstrate varying degrees 
of postural control vulnerability. 

The integration of demographic factors including age, 
body mass index, and work duration with both rearfoot and 
midfoot characteristics through clustering analysis may 
provide enhanced understanding of which specific foot 
posture patterns are most detrimental to dynamic balance 
performance. Given the substantial occupational health 
burden and growth in the logistics sector, identifying high-
risk foot posture phenotypes could inform targeted 

intervention strategies and improve workplace injury 
prevention programs. 

The purpose of this study was to apply unsupervised 
machine learning clustering to identify distinct foot posture 
phenotypes among logistics service workers based on age, 
body mass index, work duration, navicular drop, and RCSP, 
and to compare dynamic balance performance between 
identified clusters using the Y-Balance Test. It was 
hypothesized that distinct foot posture-based clusters would 
emerge that demonstrate significant differences in dynamic 
balance performance. 

 
METHODS 

Participants 

A total of 236 logistics service workers were initially 
recruited from a logistics company healthcare center 
between August 2021 and March 2022. Of these, 31 
participants were excluded due to missing data and 93 were 
excluded for recent ankle sprains or lower extremity injuries 
within the past month, resulting in a final sample of 112 
participants. The study received ethical approval from the 
Institutional Review Board at Yonsei University Mirae 
campus (IRB no. 1041849-202301-BM-016-01), with in-
formed consent waived due to the retrospective nature of 
the data analysis. 

Inclusion criteria were: (1) individuals over 18 years of 
age, (2) ability to perform the Y-Balance Test without pain 
or discomfort, and (3) minimum of 6-month work 
experience in logistics service (Kim et al., 2025). Exclusion 
criteria included: (1) history of lower extremity surgery 
within the past 6 months, (2) diagnosed ankle osteoarthritis, 
(3) previous ankle surgery involving intra-articular fixation, 
(4) acute musculoskeletal injury or pain in the lower 
extremities within the past 3 months, (5) history of vestibu-
lar disorders or balance impairments, (6) neurological 
conditions affecting balance, and (7) uncorrected visual 
impairments.15 

 
Measurement of navicular drop 

The navicular drop test was conducted following 
standardized procedures to assess medial longitudinal arch 
mobility and foot posture.16 Participants were initially 
seated with feet flat on the floor and knees flexed at 90 
degrees. The most prominent point of the navicular 
tuberosity was identified and marked while maintaining the 
subtalar joint in neutral position. The height of the navicular 
tuberosity from the floor was measured using a rigid ruler 
placed perpendicular to the ground. Participants were then 
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asked to stand in a relaxed bilateral stance position with 
equal weight distribution, and the navicular height was 
measured again. The navicular drop value was calculated as 
the difference between seated and standing measurements, 
recorded in millimeters, with excellent intra-rater reliability 
previously demonstrated (ICC = 0.88-0.97).16 

 
Measurement of resting calcaneal stance position 

RCSP was measured to assess rearfoot alignment following 
validated protocols for foot posture assessment.3,8,17 
Participants stood in a relaxed bilateral stance on a 20-cm 
high platform with feet shoulder-width apart. A bisecting line 
was drawn on the skin over the posterior aspect of the 
calcaneus using anatomical landmarks. The angle between 
this bisecting line and a vertical reference line was measured 
using a standard goniometer in the frontal plane. Measure-
ments were recorded in degrees, with positive values 
indicating valgus (eversion) and negative values indicating 
varus (inversion) positioning.  

 
Y-balance test 

The Y-Balance Test was performed using a standardized 
testing kit following established protocols to assess dynamic 
balance.18 Participants stood on their dominant leg at the 
center of the testing platform with hands placed on the iliac 
crests. The non-dominant leg was used to push the reach 
indicator as far as possible in three directions: anterior, 
posteromedial, and posterolateral. Six practice trials were 
performed in each direction before data collection to 
minimize learning effects.19 Three successful trials were 
recorded for each direction, with the maximum reach 
distance measured in centimeters at the point where the 
most distal part of the reaching foot touched the measuring 
tape. Reach distances were normalized to leg length 
(measured from anterior superior iliac spine to medial 
malleolus) and expressed as percentages. The Y-Balance 
Test has demonstrated excellent reliability in adult 
populations with intra-rater reliability (ICC = 0.85-0.91) 
and good validity for dynamic balance assessment.18-20  

 
Unsupervised machine learning 

1) Preprocessing 
Five variables were selected for clustering analysis: age, 

work duration, body mass index, navicular drop, and RCSP. 
Missing data were removed from the dataset following 
established machine learning preprocessing protocols. All 
variables were normalized to the interval [-1, 1] using min-
max scaling to ensure equal contribution to the clustering 
algorithm regardless of measurement units or scales, for K-

means clustering applications. 
 
2) K-means clustering 
K-means clustering was performed to identify distinct 

foot posture phenotypes within the dataset using established 
unsupervised machine learning approaches.11,14 The optimal 
number of clusters was determined using silhouette score 
analysis, with the cluster number yielding the highest 
silhouette score selected for final analysis, consistent with 
recent biomechanical clustering applications.13,21 The K-
means algorithm was configured with random initialization, 
10 re-runs to ensure stability, and a maximum of 300 
iterations for convergence.13,21 Cluster centroids were 
calculated and participants were assigned to clusters based 
on minimum Euclidean distance from centroids. 

 
Statistical analysis 

Descriptive statistics were calculated for all variables 
including means, standard deviations, and ranges. 
Normality of data distribution was assessed using the 
Kolmogorov-Smirnov test, as applied in recent foot posture 
research. For comparisons between three or more clusters, 
one-way analysis of variance (ANOVA) was performed. 
When significant main effects were detected (p < 0.05), 
Fisher's Least Significant Difference (LSD) post-hoc testing 
was conducted to identify specific between-group 
differences. The significance level was set at α = 0.05 for all 
statistical tests. Statistical analyses were performed using 
SPSS version18.0 (IBM Corp., Armonk, NY). 

 

RESULTS 

Participant characteristics and clustering analysis 

The final sample consisted of 112 logistics service workers 
with a mean age of 37.72 ± 9.10 years and mean BMI of 
22.88 ± 3.21 kg/m² (Table 1). The silhouette score analysis 
identified four as the optimal number of clusters (Figure 1), 
with the K-means algorithm successfully partitioning 
participants into distinct phenotypic groups based on age, 
work duration, BMI, navicular drop, and RCSP. 

 
Cluster characteristics and foot posture phenotypes 

The clustering analysis revealed four distinct 
phenotypes that demonstrated significant differences 
across multiple variables (Table 2), with foot posture 
parameters showing particularly strong differentiation 
(navicular drop: F = 40.622, p < 0.001; RCSP: F = 29.417, 
p < 0.001) (Figure 2). These phenotypes represented 
different manifestations of foot posture abnormalities and 
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their associated characteristics. 
Cluster 1 (n=22) emerged as a rearfoot valgus-dominant 

pronated foot type, characterized by the most pronounced 
rearfoot valgus alignment (6.66±2.60°) combined with 
moderate navicular drop (0.63±0.29 cm). This phenotype 
was associated with higher BMI (25.18±3.32 kg/m²) and the 
longest work duration (663.73 ± 466.10 days), suggesting 
that prolonged occupational exposure and increased body 
weight may contribute to this rearfoot-dominant pronation 
pattern. In contrast, Cluster 2 (n=32) represented a midfoot 
collapse-dominant pronated foot type, exhibiting the highest 
navicular drop (1.11±0.17 cm) while maintaining relatively 
moderate rearfoot positioning (1.65±2.41°). Interestingly, 
this cluster consisted of the youngest workers (31.06±4.60 
years) with the shortest work duration (316.97±201.80 

days), indicating that this midfoot-predominant pattern may 
represent an early-onset foot posture abnormality rather 
than one developed through occupational wear. 

The clustering also identified an unexpected age-
related phenotype in Cluster 3 (n=23), which was 
distinguished primarily by advanced age (50.91±3.50 
years) rather than specific foot posture characteristics. 
While this cluster showed moderate pronation features 
(navicular drop: 0.77±0.37 cm; rearfoot valgus: 
1.70±3.57°), the predominant clustering factor was 
chronological age, suggesting that aging may create a 
distinct worker profile that transcends specific foot 
posture classifications. This finding contrasts with 
Cluster 4 (n=35), which represented a clear supinated 
foot type characterized by negative RCSP (–0.75±2.87°, 
indicating varus alignment) and the lowest navicular 
drop (0.41±0.22 cm), reflecting maintenance of a high 
medial longitudinal arch structure. 
 
Dynamic balance performance differences 

The functional implications of these distinct foot posture 
phenotypes became evident in dynamic balance perfor-
mance, with significant differences observed in the 
posterolateral direction of the Y-Balance Test (F=3.900, 
p=0.011), while anterior and posteromedial directions 
showed non-significant trends (p=0.067 and p=0.062, 
respectively) (Figure 3). The supinated foot phenotype 
(Cluster 4) demonstrated superior posterolateral reach 
performance (77.76±13.63%), which differed significantly 
from both the midfoot collapse-dominant pronated type 
(Cluster 2: 66.18±16.37%, mean difference=11.58%, 
p=0.003) and the age-related phenotype (Cluster 3: 
67.78±14.97%, mean difference=9.97%, p=0.018) 

Table 1. Participants characteristics 

Variables Total (N=112) 

Age (yr) 37.72 ± 9.10 

Height (cm) 172.69 ± 15.80 

Weight (kg) 69.40 ± 10.40 

BMI (kg/m2) 22.88 ± 3.21 

Work duration (d) 421.76 ± 298.30 

Navicular height in sitting (cm) 4.83 ± 0.63 

Navicular height in standing (cm) 4.10 ± 0.70 

Navicular drop (cm) 0.73 ± 0.38 

Resting calcaneal stance position (°) 1.89 ± 3.86 
Y-balance test: anterior direction (cm/leg 

length %) 
71.01 ± 8.38 

Y-balance test: posteromedial direction 
(cm/leg length %) 

86.82 ± 14.38 

Y-balance test: posterolateral direction 
(cm/leg length %) 

71.78 ± 15.97 

 
Figure 1. Silhouette scores according to number of clusters. 
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(Table 3, Figure 4). The rearfoot valgus-dominant pronated 
type (Cluster 1) showed intermediate performance 
(74.57±15.88%), suggesting that the specific pattern of foot 
posture abnormality influences dynamic balance capabili-
ties, with midfoot collapse appearing more detrimental to 
posterolateral stability than isolated rearfoot malalignment. 

 

DISCUSSION 

This study represents a significant advancement in foot 
posture classification and its relationship with dynamic 
balance performance in occupational settings. Our 
unsupervised machine learning approach offers distinct 
advantages over traditional foot posture classification 
methods such as binary pronation-supination categories or 

 
Figure 2. Comparison of navicular drop and resting calcaneal stance position between clusters. 

Table 2. Comparisons of variables between clusters 

Variables Cluster 1 (N=22) Cluster 2 (N=32) Cluster 3 (N=23) Cluster 4 (N=35) F p 

Age (yr) 38.82 ± 7.00 31.06 ± 4.60 50.91±3.50 34.46 ± 6.40 60.152 <0.001 

Height (cm) 172.41 ± 6.40 167.59 ± 7.30 174.52 ± 5.30 176.31 ± 5.80 1.850 0.142 

Weight (kg) 74.95 ± 11.50 67.12 ± 9.70 66.09 ± 9.70 70.17 ± 9.00 3.692 0.014 

BMI (kg/m2) 25.18 ± 3.32 22.54 ± 3.29 21.60 ± 2.27 22.59 ± 2.87 5.794 <0.001 

Work duration (d) 663.73 ± 466.10 316.97 ± 201.80 388.22 ± 172.10 387.51 ± 206.80 7.435 <0.001 

NH in sitting (cm) 4.62 ± 0.60 4.95 ± 0.46 4.45 ± 0.61 5.09 ± 0.65 6.786 <0.001 

NH in standing (cm) 4.00 ± 0.63 3.84 ± 0.51 3.67 ± 0.47 4.68 ± 0.65 17.799 <0.001 

ND (cm) 0.63 ± 0.29 1.11 ± 0.17 0.77 ± 0.37 0.41 ± 0.22 40.622 <0.001 

RCSP (°) 6.66 ± 2.60 1.65 ± 2.41 1.70 ± 3.57 –0.75 ± 2.87 29.417 <0.001 

YBT-anterior 71.05 ± 9.53 67.84 ± 7.96 72.35 ± 7.31 73.00 ± 7.74 2.456 0.067 
YBT-posteromedial 
(cm/leg length %) 

89.71 ± 15.86 83.60 ± 15.23 82.45 ± 11.64 90.81 ± 12.63 2.515 0.062 

YBT-posterolateral 
(cm/leg length %) 

74.57 ± 15.88 66.18 ± 16.37 67.78 ± 14.97 77.76 ± 13.63 3.900 0.011 

BMI, body mass index; NH, navicular height; ND, navicular drop; YBT, Y-balance test. 
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the FPI by identifying naturally occurring phenotypes 
without predetermined categorical frameworks. Unlike 
traditional methods that focus primarily on static foot 
posture assessment, our clustering methodology simultane-
ously integrates biomechanical, occupational, and demo-
graphic characteristics to reveal complex risk profiles that 
would not be captured by conventional binary classification 
systems. This data-driven approach identified unique 
phenotypes such as the "Midfoot Collapse" group (C2) with 
combined high navicular drop and RCSP values, and the 
"Age-Related" group (C3) where demographic factors 
override biomechanical factors in determining balance 
performance. For occupational health applications, this 
multi-dimensional clustering provides more nuanced risk 
stratification for logistics workers, enabling targeted 
interventions for specific subgroups rather than broad 
categorical approaches. 

The application of unsupervised machine learning for 
foot posture classification yielded results that both align 
with and extend beyond previous research findings. 
Traditional approaches have typically employed binary 
comparisons between normal and pronated feet or utilized 
predetermined foot type categories based on measurements 
such as navicular drop or foot posture index.12,15 The current 
clustering analysis successfully identified naturally 
occurring phenotypic patterns, revealing two distinct 
subtypes of pronated feet: rearfoot valgus-dominant and 
midfoot collapse-dominant phenotypes. This differentiation 

is consistent with biomechanical literature suggesting that 
pronation manifests through multiple pathways involving 
different anatomical structures.22 Previous studies have 
demonstrated that individuals with flat feet show reduced 
dynamic balance performance compared to normal foot 
types, with normalized reach distances typically ranging 
from 76.9% to 84.3% of leg length in pronated groups 
versus 84.3% to 89.2% in normal groups.17,23 The clustering 
approach validates these findings while providing enhanced 
granularity in understanding foot posture variations. 

The differential impact of distinct pronated foot pheno-
types on postural control mechanisms provides important 
insights into the biomechanical basis of balance deficits. 
The midfoot collapse-dominant phenotype demonstrated 
more pronounced balance impairments than the rearfoot 
valgus-dominant type, suggesting that medial longitudinal 
arch integrity plays a more critical role in dynamic stability 
than rearfoot alignment alone. This finding aligns with 
research indicating that midfoot function, evaluated through 
navicular drop measurements, significantly influences 
proprioceptive feedback mechanisms and shock absorption 
during weight-bearing activities.9,10 The superior perfor-
mance of supinated feet in posterolateral reaching tasks can 
be attributed to enhanced mechanical stability provided by 
the rigid high arch structure and increased activation of 
lateral stabilizing muscles.5 Previous electromyographic 
studies have demonstrated that individuals with pronated 
feet exhibit altered muscle activation patterns, 

 
Figure 3. Comparison of three directions of Y-balance test between clusters. 
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particularly increased peroneus longus activity, which may 
compromise adaptive postural responses during dynamic 
tasks.24 The age-related phenotype identified in Cluster 3 
further supports evidence that chronological aging affects 
postural control independent of specific foot structural 
characteristics.25 Despite having relatively preserved foot 
posture characteristics (moderate navicular drop and RCSP 

values), this older group (mean age 50.9 years) demon-
strated only moderate balance performance, suggesting that 
age-related sensorimotor decline becomes a more dominant 
factor than foot biomechanics in this population. Age-
related changes including reduced proprioceptive acuity, 
slower reaction times, decreased muscle strength, and 
impaired central processing of sensory information may 

Table 3. Post-hoc comparisons of variables between clusters 

Dependent 
variable 

Between cluster Mean difference Standard error p 
95% Confidence interval 

Lower bound Upper bound 

Age 

C1 C2 7.76 1.57 0.000 4.64 10.87 

C3 –12.09 1.69 0.000 –15.45 –8.74 

C4 4.36 1.55 0.006 1.30 7.42 
C2 C1 –7.76 1.57 0.000 –10.87 –4.64 

C3 –19.85 1.55 0.000 –22.93 –16.77 

C4 –3.39 1.39 0.016 –6.15 –0.64 
C3 C1 12.09 1.69 0.000 8.74 15.45 

C2 19.85 1.55 0.000 16.77 22.93 

C4 16.46 1.52 0.000 13.43 19.48 
C4 C1 –4.36 1.55 0.006 –7.42 –1.30 

C2 3.39 1.39 0.016 0.64 6.15 

C3 –16.46 1.52 0.000 –19.48 –13.43 

Work duration 

C1 C2 346.76 76.61 0.000 194.91 498.60 

C3 275.51 82.49 0.001 112.01 439.01 

C4 276.21 75.26 0.000 127.04 425.38 
C2 C1 –346.76 76.61 0.000 –498.60 –194.91 

C3 –71.25 75.61 0.348 –221.13 78.63 

C4 –70.55 67.65 0.299 –204.64 63.55 
C3 C1 –275.51 82.49 0.001 –439.01 –112.01 

C2 71.25 75.61 0.348 –78.63 221.13 

C4 0.70 74.24 0.992 –146.46 147.87 
C4 C1 –276.21 75.26 0.000 –425.38 –127.04 

C2 70.55 67.65 0.299 –63.55 204.64 

C3 –0.70 74.24 0.992 –147.87 146.46 

Navicular 
drop 

C1 C2 –0.49 0.07 0.000 –0.63 –0.34 

C3 –0.15 0.08 0.065 –0.30 0.01 

C4 0.21 0.07 0.004 0.07 0.35 

C2 C1 0.49 0.07 0.000 0.34 0.63 

C3 0.34 0.07 0.000 0.20 0.48 

C4 0.70 0.06 0.000 0.57 0.83 

C3 C1 0.15 0.08 0.065 –0.01 0.30 

C2 –0.34 0.07 0.000 –0.48 –0.20 

C4 0.36 0.07 0.000 0.22 0.50 

C4 C1 –0.21 0.07 0.004 –0.35 –0.07 

C2 –0.70 0.06 0.000 –0.83 –0.57 

C3 –0.36 0.07 0.000 –0.50 –0.22 
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Table. 3 Continued 

Dependent 
variable 

Between cluster Mean difference Standard error p 
95% Confidence interval 

Lower bound Upper bound 

Resting 
calcaneal 

stance 
position 

C1 C2 5.01 0.81 0.000 3.41 6.61 

C3 4.97 0.87 0.000 3.25 6.69 

C4 7.42 0.79 0.000 5.85 8.99 
C2 C1 –5.01 0.81 0.000 –6.61 –3.41 

C3 –0.04 0.80 0.958 –1.62 1.54 

C4 2.41 0.71 0.001 1.00 3.82 
C3 C1 –4.97 0.87 0.000 –6.69 –3.25 

C2 0.04 0.80 0.958 –1.54 1.62 

C4 2.45 0.78 0.002 0.90 4.00 
C4 C1 –7.42 0.79 0.000 –8.99 –5.85 

C2 –2.41 0.71 0.001 –3.82 –1.00 

C3 –2.45 0.78 0.002 –4.00 –0.90 

YBT–
posterolateral 

C1 C2 8.38 4.28 0.053 –0.10 16.87 

C3 6.78 4.61 0.144 –2.35 15.92 

C4 –3.19 4.20 0.449 –11.52 5.14 
C2 C1 –8.38 4.28 0.053 –16.87 0.10 

C3 –1.60 4.22 0.705 –9.97 6.77 

C4 –11.58 3.78 0.003 –19.06 –4.09 
C3 C1 –6.78 4.61 0.144 –15.92 2.35 

C2 1.60 4.22 0.705 –6.77 9.97 

C4 –9.97 4.15 0.018 –18.19 –1.76 
C4 C1 3.19 4.20 0.449 –5.14 11.52 

C2 11.58 3.78 0.003 4.09 19.06 

C3 9.97 4.15 0.018 1.76 18.19 

 
Figure 4. Violin plots for comparison of posterolateral direction of Y-balance test between clusters. 
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override the influence of foot posture on balance control. 
This finding indicates that traditional foot-focused 
interventions may be less effective in older workers, and 
comprehensive age-appropriate balance training programs 
addressing multiple sensorimotor systems may be more 
beneficial for this phenotype. The identification of this 
distinct age-related phenotype highlights the importance of 
considering chronological age as a primary factor in 
occupational health risk stratification, even when bio-
mechanical foot measures appear relatively normal. 

The clinical implications of these findings extend beyond 
academic interest to practical occupational health applica-
tions. Logistics service workers face substantial injury risks, 
with ankle-related incidents accounting for 23% of 
workplace injuries and resulting in an average of 20 lost 
workdays per incident.4,11 The identification of specific foot 
posture phenotypes associated with reduced dynamic bal-
ance performance enables more targeted injury prevention 
strategies. Workers identified with midfoot collapse-dom-
inant pronation patterns may benefit from specific 
interventions including intrinsic foot muscle strengthening, 
proprioceptive training, and arch support orthoses.26,27 The 
clustering approach also supports personalized footwear 
recommendations, as different foot types may require 
distinct orthotic designs to optimize both comfort and 
stability during occupational tasks. Furthermore, the 
integration of multiple demographic and anthropometric 
variables in the clustering model provides a comprehensive 
framework for risk stratification that could be implemented 
in pre-employment screening or periodic health assessments 
for logistics workers. 

Several limitations warrant consideration in interpreting 
these findings. The cross-sectional design prevents 
establishment of causal relationships between foot posture 
characteristics and balance deficits, and longitudinal studies 
would be necessary to determine whether these relation-
ships persist over time or change with occupational 
exposure. The clustering analysis, while data-driven, relied 
on predetermined variables that may not capture all relevant 
aspects of foot structure and function. Additionally, the Y-
Balance Test, though validated for dynamic balance assess-
ment, represents only one aspect of the complex postural 
control demands encountered in actual work environments. 
The study population was limited to logistics workers, 
which may restrict generalizability to other occupational 
groups with different physical demands. Finally, our cluster 
validation relied solely on the silhouette score to determine 
the optimal number of clusters. While this method is 
methodologically appropriate, supplementary validation 
using additional techniques such as the elbow method or 

gap statistic would have enhanced the robustness and 
credibility of our four-cluster solution. Future research 
should investigate the temporal stability of these phenotypic 
classifications and examine whether targeted interventions 
can modify cluster membership or improve balance 
performance within specific phenotypes. Additionally, the 
incorporation of kinematic and electromyographic measures 
would provide deeper insights into the underlying 
mechanisms responsible for the observed performance 
differences between foot posture clusters. 

 

CONCLUSIONS 

Unsupervised machine learning clustering successfully 
identified four distinct foot posture phenotypes among 
logistics service workers, revealing that midfoot collapse-
dominant pronation patterns demonstrate greater dynamic 
balance impairments than rearfoot valgus-dominant types. 
The superior posterolateral reach performance observed in 
supinated foot phenotypes compared to pronated groups 
indicates that foot structural characteristics significantly 
influence occupational-relevant balance capabilities. These 
findings support the implementation of phenotype-specific 
interventions for injury prevention in logistics workers, 
particularly targeted proprioceptive training and arch 
support strategies for individuals with midfoot dysfunction. 

 

Key Points  

Question Can unsupervised machine learning identify 
distinct foot posture phenotypes among logistics service 
workers beyond traditional binary classifications? Do 
different foot posture phenotypes demonstrate varying 
dynamic balance performance patterns that could inform 
occupational injury prevention strategies? 

Findings Four distinct foot posture phenotypes were 
identified, with workers having supinated feet demonstrating 
superior posterolateral reach performance compared to 
midfoot collapse-dominant pronated feet. Midfoot collapse-
dominant pronation patterns showed greater dynamic 
balance impairments than rearfoot valgus-dominant types. 

Meaning Workers with midfoot collapse-dominant feet 
should be considered to receive targeted arch strengthening 
and proprioceptive training rather than standard flat foot 
interventions. Clustering-based foot assessment may identify 
high-risk workers for balance-related injuries, enabling 
personalized orthotic prescriptions and workplace 
modifications. 
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