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Background Frailty is an important condition to detect in its early stages to prevent progression to 
more severe stages in older adults. Age-related declines in physical performance are strongly 
associated with frailty. 
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Purpose This study aims to develop a frailty classification model by comparing the performance 
of machine learning models based on physical performance measures in community-dwelling older 
adults. 

Study design A cross-sectional study 

Methods Physical performance data were collected from older adults aged ≥65 years. Frailty 
classification models were developed using logistic regression, support vector machine (SVM), K-
nearest neighbors (KNN), decision tree, and random forest. Clinical features including short 
physical performance battery, single-leg stance, SARC-F, body mass index, and mini-mental state 
examination (MMSE) were used as input variables for model development. The performance of 
each model was evaluated using accuracy, sensitivity, specificity, precision, F1-score, and area 
under the receiver operating characteristic curve (AUC). Permutation feature importance was 
employed to identify key predictors of frailty. 

Results The KNN model demonstrated the highest classification performance, achieving an 
accuracy of 0.93, an F1-score of 0.95, and an AUC of 0.86, indicating its suitability for frailty 
assessment. The logistic regression model achieved an accuracy of 0.86, an F1-score of 0.89, and 
an AUC of 0.98. The random forest model showed similar results, with an accuracy of 0.86, an F1-
score of 0.88, and an AUC of 0.96. The SVM model recorded an accuracy of 0.79, an F1-score of 
0.84, and an AUC of 0.80. The decision tree model showed the lowest performance, with an 
accuracy of 0.71, an F1-score of 0.78, and an AUC of 0.64. Feature importance analysis revealed 
that MMSE and SARC-F were the most influential predictors in the KNN model. 

Conclusions This study demonstrates that KNN is well-suited for identifying subtle variations in 
physical function that contribute to frailty. The results highlight its potential for clinical 
implementation in automated frailty screening. Feature importance analysis provides insight into 
key predictors, supporting personalized assessment strategies. However, due to the small sample 
size, further research is needed to assess the generalizability of frailty classification models in larger 
populations. 
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INTRODUCTION 

Frailty is a health condition characterized by increased 
vulnerability to adverse health outcomes, becoming more 
prevalent with aging.1,2 It is associated with the decline of 
multiple organ systems, threatening an individual's ability to 
maintain independent activities of daily living and overall 
quality of life.2,3 Preserving independent activities of daily 
living is essential for reducing the burden on healthcare 
systems, such as hospital admissions and social care services, 
ultimately extending a healthy lifespan.4,5 Therefore, frailty 
is a critical issue that requires proactive prevention and 
management at a societal level. 

Older adults experience a decline in physical function, 
which is strongly linked to increased dependence, the need 
for care, and low perceived quality of life.6,7 Additionally, 
sarcopenia—characterized by progressive loss of muscle 
mass, strength, and slow gait speed—has been recognized as 
a key condition for physical function impairment with 
frailty.8,9 Systematic review and meta-analysis demonstrated 
that sarcopenia and frailty share and in linked with core 
biomarkers, including metabolic, inflammatory, and hema-
tologic markers, and nutritional deficiencies, leading to 
decreased physical capability.10,11 Given this strong overlap, 
assessing sarcopenia can provide valuable insights for frailty 
classification, particularly when combined with objective 
physical performance measures.  

Notably, physical performance has been identified as a key 
component in the development of frailty.12,13 The short 
physical performance battery (SPPB) and single-leg stance 
(SLS) test are widely used assessments of physical function 
in older adults.14,15 The SPPB consists of three components: 
walking speed, standing balance, and a chair sit-to-stand test, 
with higher scores indicating better physical function.14 
Balance is a fundamental requirement for daily activities 
such as standing, walking, and climbing stairs, making the 
SLS a useful test for evaluating postural control and stability. 
By incorporating sarcopenia-related assessments alongside 
SPPB and SLS, a more comprehensive evaluation of frailty 
risk can be achieved. 

Given the strong association between physical performance 
and frailty, utilizing objective assessments is essential for early 
detection and intervention. Machine learning (ML) techniques 
are particularly suited for this purpose, as they can integrate 
multiple variables and capture complex patterns to improve 
classification accuracy.16 In this study, we selected five 
commonly used ML models—logistic regression, support 
vector machine (SVM), K-nearest neighbors (KNN), decision 
tree, and random forest to compare a range of linear and non-
linear, parametric and non-parametric, and interpretable versus 

ensemble approaches. The aim was to (1) evaluate the ability 
of SPPB, SLS, and sarcopenia-related indicators to predict 
frailty through ML approaches, and (2) identify the most 
suitable ML model for classifying frailty status in community-
dwelling older adults and determine the most influential 
features contributing to model performance. This approach 
may contribute to more effective screening and personalized 
management of frailty. 

 

MATERIALS AND METHODS 

Participants  

Participants aged 65 years and older who lived in South 
Korea were recruited from the general community. All par-
ticipants resided in urban areas and were able to live inde-
pendently without caregivers or family. Inclusion criteria 
were as follows: 1) no neurocognitive impairment; 2) able to 
walk with or without assistive walking aids; 3) residents of 
the community. Exclusion criteria were as follows: 1) 
fracture within the past three months; 2) severe cardiovas-
cular disease (myocardial infarction, unstable angina pectoris, 
heart failure); 3) hearing or language impairment that made 
communication difficult. All participants were informed 
about the purpose and procedures of the study and voluntarily 
signed the informed consent form to participate. Ethical 
approval for this study was obtained from the Institutional 
Review Board of Sangji University. 

 
Procedure 

Participants completed a demographic questionnaire, the 
strength, assistance with walking, rising from a chair, 
climbing stairs, and falls questionnaire (SARC-F), and the 
mini-mental state examination (MMSE). Following this, 
frailty and physical performance tests (SPPB and SLS) 
were administered. Examiner A assessed participants’ 
eligibility, obtained written informed consent, and 
collected data related to the questionnaires. Examiner B 
assessed frailty, while Examiner C performed the physical 
performance tests. 

 
Frailty assessment 

Frailty was assessed using the Fried frailty phenotype, which 
consists of five components: unintentional weight loss, fatigue, 
low physical activity, weak grip strength, and slow walking 
speed.1,17,18 Unintentional weight loss was determined by 
asking participants whether they had lost more than 5% of their 
body weight or 4.5 kg unintentionally over the past year. 
Fatigue was evaluated based on self-reported exhaustion. 
Participants were classified as experiencing fatigue if they 
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reported feeling exhausted on at least 3 to 4 days per week or 
most of the time in response to the following questions: “Have 
you felt that everything was difficult?” or “Have you felt that 
you couldn’t get anything done?” Low physical activity was 
defined as no self-reported engagement in physical activities 
such as walking, recreational activities, or sports.18 Grip 
strength was measured using a Jamar dynamometer, with 
participants seated on a chair without armrests, shoulders 
adducted, elbows flexed at 90 degrees, and wrists in a neutral 
position. The test was performed three times, and the average of 
the three trials was used for analysis. Weak grip strength was 
defined based on bady mass index (BMI)-specific cutoffs.1 In 
men, weak grip strength was classified as 29 kg or less for those 
with a BMI of 24 kg/m² or lower, 30 kg or less for those with a 
BMI between 24.1 and 26 kg/m², 31 kg or less for those with a 
BMI between 26.1 and 28 kg/m², and 32 kg or less for those 
with a BMI greater than 28 kg/m². In women, weak grip 
strength was classified as 17 kg or less for those with a BMI of 
23 kg/m² or lower, 17.3 kg or less for those with a BMI between 
23.1 and 26 kg/m², 18 kg or less for those with a BMI between 
26.1 and 29 kg/m², and 21 kg or less for those with a BMI 
greater than 29 kg/m². Walking speed was determined using a 
standardized 4-meter walk test.17 A score of 1 point was 
assigned for frailty if the walking speed was < 1.0 m/s. Based 
on these five components, participants who met one or two 
criteria were classified as pre-frail, while those who met three 
or more were classified as frail.1 

 
SARC-F questionnaire 

The SARC-F questionnaire consists of five components: 
muscle strength, assistance with walking, rising from a chair, 
climbing stairs, and falls.19 Muscle strength is assessed by 
asking participants how much difficulty they have lifting or 
carrying a 10-pound object, with scores of 0 (no difficulty), 
1 (some difficulty), and 2 (a lot of difficulty or unable to do). 
Assistance with walking is evaluated based on the difficulty 
of walking across a room and the use of aids or personal 
assistance, scored as 0 (no difficulty), 1 (some difficulty), and 
2 (significant difficulty, requiring aids, or unable to walk 
without help). The ability to rise from a chair is assessed by 
evaluating the difficulty in transitioning from a chair or bed 
and whether aids or assistance are needed, with scores of 0 
(no difficulty), 1 (some difficulty), and 2 (significant 
difficulty, requiring aids, or unable to rise without help). 
Climbing stairs is evaluated by asking about the difficulty in 
ascending a flight of 10 steps, with scores of 0 (no difficulty), 
1 (some difficulty), and 2 (a lot of difficulty or inability to do 
so). Falls are scored as follows: 0 points for no falls, 1 point 
for one to three falls, and 2 points for reporting four or more 

falls in the past year. Each item is scored from 0 (no difficulty) 
to 2 (severe difficulty or inability), resulting in a total score 
ranging from 0 to 10, and higher scores indicating a higher 
risk for sarcopenia. 

 
Physical performance assessment 

Physical performance was evaluated using the SPPB and 
SLS tests. The SPPB consists of three components: walking 
speed, a standing balance test, and a chair sit-to-stand test. 
For the walking speed test, participants were required to walk 
4 meters at their usual pace. A score of 4 was given if they 
completed the walk in less than 4.82 seconds, 3 if they took 
between 4.82 and 6.20 seconds, 2 if they took between 6.21 
and 8.70 seconds, and 1 if they took more than 8.70 seconds. 
A score of 0 was assigned if the participant was unable to 
complete the walk. For the standing balance test, participants 
were asked to maintain three standing positions: side-by-side, 
semi-tandem, and full-tandem, with their arms crossed over 
their chest. For the side-by-side and semi-tandem stances, 
participants received 1 point if they maintained the position 
for 10 seconds, and 0 points if they could not. For the full-
tandem stance, participants received 2 points if they 
maintained the position for 10 seconds, 1 point if they 
maintained it for at least 3 seconds but less than 10 seconds, 
and 0 points if they were unable to maintain the position for 
at least 3 seconds. For the chair sit-to-stand test, participants 
were instructed to stand up from a chair five times as quickly 
as possible without using their arms. A score of 4 was given 
if they completed the task in 11.19 seconds or less, 3 if they 
took between 11.20 and 13.69 seconds, 2 if they took 
between 13.70 and 16.69 seconds, and 1 if they required 
16.70 seconds or more. A score of 0 was assigned if the 
participant was unable to complete five repetitions within 60 
seconds or could not perform the test. The total SPPB score 
was calculated as the sum of the three component scores, 
ranging from 0 (indicating the poorest physical performance) 
to 12 (indicating the best physical performance). Higher 
scores reflect better physical function, while lower scores 
indicate greater impairment in mobility and balance. 

To assess SLS, participants were instructed to stand on 
their preferred leg while keeping their arms crossed over their 
chest.15 The maximum time (in seconds) that participants 
could maintain balance was recorded, with the best of the two 
trial times used for analysis. The test ended after 60 seconds. 
If the participant lost balance or placed the raised foot on the 
ground, the test was terminated. A longer duration indicated 
better balance performance, while a shorter duration 
suggested impaired balance ability.15  
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Statistical analysis 

Normality of the continuous independent variables was 
assessed using the Shapiro–Wilk test. An independent t-test 
was used for parametric variables, the Mann–Whitney U test 
for non-parametric variables, and the chi-squared test for 
categorical variables to assess differences between frail and 
pre-frail older adults. To classify frailty status (frail vs. pre-
frail), five ML models—logistic regression, SVM, KNN, 
decision tree, and random forest—were applied. The input 
features included BMI, MMSE, SPPB, SLS, and the SARC-F 
questionnaire. The dataset was split into 70% for training and 
30% for testing using stratified sampling to preserve the 
original class distribution. Hyperparameter tuning was con-
ducted using grid search with 5-fold cross-validation, and 
models were optimized based on the F1-score to balance 
precision and sensitivity (recall). Model performance was 
evaluated on the test dataset using multiple classification 
metrics, including accuracy, sensitivity, specificity, precision, 
and F1-score. Additionally, receiver operating characteristic 
curve analysis was performed to evaluate the binary 
classification capability of each model, and the area under the 
curve (AUC) was calculated as a measure of discriminative 
performance. Permutation feature importance was applied to 
interpret model predictions and identify key predictors of 
frailty. All analyses were implemented in Python (ver. 3.11). 

 

RESULTS 

Participant characteristics 

Table 1 shows the characteristics of frail and pre-frail older 
adults. Compared to the pre-frail group, the frail group had a 
shorter height and lower MMSE score (p<0.05). Additionally, 

the frail group showed lower SPPB scores, and higher 
SARC-F scores compared to the pre-frail group (p<0.05). 

 
Performance of classification models 

Table 2 displays the results of five prediction models based 
on accuracy, sensitivity, specificity, precision, and F1-score. 
Five ML models demonstrated varying classification 
performance with AUCs (Figure 1). Among the models 
tested, the KNN model achieved the highest accuracy (0.93) 
and F1-score (0.95), with an AUC of 0.86 for classifying frail 
older adults, demonstrating strong predictive performance. 
Logistic regression also showed high classification ability, 
with an accuracy of 0.86, an F1-score of 0.89, and an AUC 
of 0.98 for frailty prediction. The random forest model 
achieved an accuracy of 0.86, and an F1-score of 0.88, with 
an AUC of 0.96. The SVM model showed an accuracy of 
0.79, an F1-score of 0.84, and an AUC of 0.80. The decision 
tree model demonstrated the lowest performance, with an 
accuracy of 0.71, an F1-score of 0.78, and an AUC of 0.64. 
MMSE and SARC-F were identified as the most important 
predictors for frailty classification, according to permutation 
importance analysis (Figure 2).  

 
DISCUSSION 

The primary objective of this study was to develop and 
evaluate an ML-based frailty classification model using 
physical performance assessments. In this study, KNN was 
the most effective ML method among five supervised mod-
els for frailty classification, integrating physical perfor-
mance measures such as SPPB, SLS, and SARC-F, along 
with individual characteristics like BMI and MMSE score. 

Table 1. Subject’s characteristics 

Characteristics Frail (n=16) Pre-frail (n=30) Statistics p-value 

Age (years) 81.38±6.22 81.80±6.55 236.50a 0.943 

Female /male (n) 12/4 17/13 0.220b 0.338 

Height (cm) 154.72±5.73 159.55±8.19 153.50a 0.047 

Weight (kg) 60.03±9.40 62.65±9.71 -0.864c 0.392 

BMI (kg/m2) 25.09±3.75 24.54±2.72 0.575c 0.568 

MMSE (score) 25.00±2.97 26.78±2.73 137.50a 0.017 

SPPB (score) 9.13±1.96 10.45±1.57 128.50a 0.009 

SLS (s) 7.35±7.20 13.19±14.34 186.00a 0.217 

SARC-F (score) 2.50±2.61 0.56±0.91 386.00a <.001 

BMI, body mass index; MMSE, mini-mental state examination; SARC-F, strength, assistance with walking, rising from a chair, 
climbing stairs, and falls questionnaire; SLS, single leg stance; SPPB, short physical performance battery. 
aMann–Whitney U test, bChi-square test, cIndependent t-test. 
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This data-driven ML approach has the potential to facilitate 
early detection and enable targeted interventions for older 
adults at risk of frailty. 

This study focused on distinguishing frail older adults 
from those in the pre-frail stage, rather than comparing them 
with robust individuals. Pre-frail individuals, although not 
yet fully frail, are high-risk populations who exhibit early 
signs of physiological vulnerability. Identifying frailty within 
this group is essential, as timely interventions at this stage 
can prevent or delay progression to full frailty.20 Several 
studies have shown that individuals transitioning from pre-
frailty to frailty experience significant declines in gait speed, 
balance, strength, and physical activity levels, often 
accompanied by worsen disabilities and decreased resilience 
to stressors.2,21 These changes lead to loss of independence 
and a steep rise in healthcare needs. By training a ML model 
to differentiate between frailty and pre-frailty, this study 
aimed to develop a clinical decision-support tool that aids in 
the early detection of advanced frailty stages in at-risk 

populations.  
Previous studies have investigated the performance of ML 

models for frailty classification considering to soci-
opsychological factors, physical function and physical ac-
tivity.22-25 Leme and de Oliveira reported best performance 
among six ML models (logistic regression, random forest, 
SVM, neural network, KNN, and naive bayes classifier) and 
random forest has best performance (accuracy of 85.5% and 
precision-recall curve of 0.97) using social, clinical, and 
psychosocial factors.25 Elsa et al. reported 0.86 of accuracy 
and 0.67 of sensitivity for prediction of frailty using grip 
strength based on shallow neural network.22 Park et al. 
reported 0.80 of AUC to identify physical frailty from 
fourteen sensor-driven feature such as time standing, 
percentage time walking, walking cadence, using pendant 
sensor attached the sternum level based on logistic regression 
modeling with an accuracy ranging from 0.71 to 0.93 across 
the ML models.23 The findings of this study, along with prior 
research, support the notion that early assessment of physical 

Table 2. Performance metrics (accuracy, specificity, sensitivity, precision, and F1-score) of logistic regression, SVM, KNN, 
decision tree and random forest 

Model Accuracy Sensitivity Specificity Precision F1-score 
Logistic regression 0.86 0.89 0.80 0.89 0.89 

SVM 0.79 0.89 0.60 0.80 0.84 

KNN 0.93 1.00 0.80 0.90 0.95 

Decision tree  0.71 0.78 0.60 0.78 0.78 

Random forest 0.86 0.78 1.00 1.00 0.88 

KNN, K-nearest neighbors; SVM, support vector machine. 

 
Figure 1. Receiver operating characteristic (ROC) curves 
and area under the curve (AUC) values of five machine 
learning classifiers for binary classification performance 
comparison. KNN, K-nearest neighbors; SVM, support 
vector machine. 

 
Figure 2. Permutation feature importance of the KNN 
model for classifying frailty.  
BMI, body mass index; KNN, K-nearest neighbors; 
MMSE, mini-mental state examination; SARC-F, stre-
ngth, assistance with walking, rising from a chair, 
climbing stairs, and falls questionnaire; SLS, single leg 
stance; SPPB, short physical performance battery. 
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function can facilitate timely interventions and potentially 
improve patient outcomes.   

The KNN algorithm demonstrated the highest classifica-
tion performance in this study, making it the most suitable 
model for frailty classification. One of the key advantages of 
KNN in frailty classification is its ability to adapt to nonlinear 
relationships between physical performance measures and 
frailty status. Since frailty is a multidimensional syndrome 
influenced by various physiological and functional factors,2 
logistic regression may have limitations in capturing these 
complex interactions. KNN, a non-parametric and instance-
based algorithm, utilizes distance-based comparisons to 
distinguish subtle differences in frailty-related features, 
contributing to its effective classification performance.26 
Moreover, KNN’s ability to integrate multiple physical and 
cognitive parameters, including MMSE, highlights its 
potential to enhance the precision of frailty risk assessment. 
From a clinical perspective, the superior performance of 
KNN in this study suggests its potential utility for screening 
and early detection of frailty. 

Logistic regression is widely used in the medical field for 
binary classification and is commonly applied to assess 
disease risk or analyze factors predicting patient progno-
sis.27,28 Unlike more complex ML models, logistic regression 
provides clear insights into the contribution of each variable 
to the classification outcome, making it particularly useful 
for clinical decision-making. In this study, logistic regression 
achieved an accuracy of 0.86 with an F1 score of 0.89, 
highlighting its effectiveness in distinguishing frail 
individuals based on physical performance measures, in-
cluding SPPB, SLS, and SARC-F. Given its simplicity, 
efficiency, and interpretability, logistic regression remains a 
practical and valuable tool for frailty assessment, particularly 
in settings where explainability is crucial. 

Through permutation feature importance analysis, the 
KNN model identified MMSE as the most important feature, 
suggesting that lower cognitive function may be associated 
with a higher risk of frailty. SARC-F emerged as the second 
most influential variable within the KNN model, highlighting 
its consistent role in frailty classification. This finding aligns 
with recent studies demonstrating the strong predictive 
validity of SARC-F for functional decline, adverse health 
outcomes, and frailty in older adults.29-31 The consistent 
importance of both cognitive status and sarcopenia-related 
measures supports their robustness and potential for 
integration into AI-based frailty screening tools. 

Despite these promising results, several limitations must 
be considered. First, the sample size was relatively small, and 
the class distribution was imbalanced, with fewer frail 
participants compared to pre-frail participants. This limita-

tion may reduce the generalizability and statistical power of 
the study results. To mitigate this issue, this study applied 
cross-validation with grid search, a widely used technique for 
improving model robustness in small and imbalanced 
datasets,32 and reported multiple evaluation metrics including 
sensitivity and specificity to provide a more comprehensive 
assessment of the model’s performance. Nevertheless, 
further studies with larger and more balanced samples are 
required to confirm and improve the robustness of the pro-
posed classification model. Additionally, while physical 
performance measures serve as valuable objective indicators 
of frailty, incorporating biological markers—such as 
inflammatory or metabolic markers—could potentially im-
prove the model’s predictive accuracy and provide a more 
comprehensive understanding of frailty pathophysiology. 

 

CONCLUSION 

In conclusion, this study demonstrates that supervised ML 
techniques, particularly KNN, can effectively classify frailty 
based on physical performance measures. These findings 
suggest that ML-based frailty classification has the potential 
to be integrated into clinical practice, enabling the early 
identification of at-risk individuals and facilitating targeted 
interventions to prevent the progression of frailty. Future 
research should focus on expanding the dataset, in-
corporating additional risk factors, and validating the model 
in diverse older adults, including robust individuals, to en-
hance its clinical applicability 

 

Key Points  

Question Can machine learning models accurately classify 
frailty in community-dwelling older adults using physical 
performance measures? 

Findings Among five models tested, the KNN model 
showed the highest classification accuracy (0.93), with 
MMSE and SARC-F identified as key predictors. 

Meaning KNN shows strong potential for use in clinical 
frailty screening and early intervention strategies through 
automated assessment. 
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