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INTRODUCTION 

The human cervical spine, a complex structure responsible 

for supporting and facilitating the movement of the head, is 

susceptible to degenerative changes due to repetitive mo-

tions and extended postures required for daily activities.1 

These degenerative alterations are particularly pronounced 

in cases of non-specific chronic neck pain (NSCNP).1,2 It is 

widely accepted that deviations in alignment and movement 

patterns can trigger the onset of painful and degenerative 
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Background The human cervical spine, vital for supporting head movements, is susceptible to 

degenerative changes, especially non-specific chronic neck pain (NSCNP). Cervical protraction 

and retraction, which are key components of cervical spine motion, have been studied to assess 

their role in NSCNP. However, the existing research lacks quantitative assessments and explores 

nonlinear relationships. 
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Purpose This study explored the relationship between cervical movements during protraction and 

retraction and NSCNP using machine learning (ML) techniques for classification. 

Study design Cross sectional study 

Methods This study included 277 non-NSCNP and 463 NSCNP office workers. Data were 

collected from the musculoskeletal screening tests. Two-dimensional video analysis was used to 

track markers during cervical protraction and retraction. The head tilt angle (HTA), cranioverte-

bral angle (CVA), head excursion angle (HEA), and protraction/retraction distances were 

measured. Six ML algorithms (random forest, neural network, decision tree, gradient boosting, 

logistic regression, and support vector machine) were employed to classify individuals with and 

without the NSCNP. The model performance was evaluated using the area under the curve 

(AUC), accuracy, recall, precision, and F1 score. 

Results Random forest performed best, with a test AUC of 0.800, followed by decision trees 

(0.790), and gradient boosting (0.701). Logistic regression and support vector machine had the 

lowest performance. CVA during retraction, CVA and HEA during protraction were significant 

predictors of NSCNP in the random forest model, indicating the importance of cervical retraction 

and protraction kinematics. 

Conclusions ML models can enhance our understanding of NSCNP and the role of cervical 

movements. These findings offer potential targets for assessment and intervention in NSCNP 

cases, and suggest the clinical utility of random forests for classification. Further research is 

needed to explore these relationships in diverse populations and investigate the underlying 

mechanisms. 

Key words Cervical protraction; Cervical retraction; Machine learning; Non-specific chronic 

neck pain. 
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conditions in the cervical spine.2 

Cervical protraction and retraction, representing a com-

bination of upper cervical extension and lower cervical 

flexion, play pivotal roles in cervical spine motion. Previous 

research has measured total head excursion, encompassing 

cervical protraction and retraction, as a sagittal translational 

motion in centimeters.3-6 Notably, individuals with neck 

pain exhibited distinct patterns, with a 7.5 cm total head 

excursion compared to 10.9 cm in healthy individuals.3 

Moreover, retraction displayed a significantly greater range 

in the neck pain group.4 Cervical protraction and retraction 

have also been quantified as craniovertebral angles (CVAs) 

in healthy individuals.7 Given the ubiquity of cervical pro-

traction in everyday activities and the therapeutic use of 

retraction to address neck pain, these movements present as 

valuable variables for classifying neck pain. Thus, it is 

reasonable to suspect a correlation among cervical protrac-

tion, retraction, and neck pain. However, despite the grow-

ing emphasis on proper movement, motor control, and 

coordination,8-11 it remains uncertain whether upper and 

lower cervical movements during cervical protraction and 

retraction differ between individuals with and without neck 

pain. Additionally, quantitative assessments of these kine-

matics in individuals with neck pain during cervical protrac-

tion and retraction are conspicuously absent from existing 

literature. 

Previous studies investigating the linear relationship be-

tween neck pain and movement have produced inconsistent 

results, possibly indicative of a nonlinear relationship.3,12 

Traditional methods such as linear and logistic regression 

may be ill-suited to capture such nonlinear relationships.13 

In response, machine learning (ML) approaches are being 

increasingly adopted for classification tasks. The strength of 

ML lies in its ability to model both linear and highly 

nonlinear relationships, potentially yielding superior accu-

racy compared with conventional statistical methods.13 

Consequently, this study aimed to achieve two primary 

objectives: 1) to develop, assess, and compare the predictive 

performance of statistical ML models for classifying indi-

viduals with and without NSCNP using cervical movements 

during protraction and retraction and 2) to investigate the 

association between cervical movements and NSCNP.  

 

METHODS 

Participants 

A total of 277 public service office workers (POWs) who 

did not have NSCNP and 463 POWs with NSCNP were 

carefully screened for eligibility. The inclusion criteria were 

that POWs had been employed in office settings, used 

computers for more than two years, and were recruited 

between September 2022 and March 2023. The eligibility 

criteria for individuals with NSCNP included two main 

factors: (1) they had to report an average neck pain intensity 

rating exceeding 3 out of 10 on a Numerical Rating Scale 

(NRS) for the preceding four weeks,14 and (2) neck pain 

intensity rating exceeding 2 out of 4 on the Northwick Park 

Neck Pain Questionnaire (NPQ).15 Asymptomatic individu-

als were eligible if they had not experienced neck pain that 

warranted treatment from a healthcare professional within 

the past two years. Exclusion criteria for both POWs, with 

or without NSCNP, encompassed a history of prior spinal 

surgery, rheumatologic conditions, ongoing or chronic res-

piratory conditions, or active compensation claims related 

to injuries. To conduct a statistical analysis of the impact of 

NSCNP involving up to eight variables, a sample size of no 

less than 80 participants was deemed necessary in accord-

ance with the common rule of using one variable per 10 

events.13 The data utilized in this study were derived from 

musculoskeletal screening tests conducted to prevent indus-

trial accidents among POWs. These data were collected 

from April 2022 to February 2023, with a focus on examin-

ing the risk factors associated with musculoskeletal dis-

orders in public service offices. It is important to note that 

for this study, informed consent was waived by the Yonsei 

University Mirae Campus Institutional Review Board prior 

to the commencement of data queries and analyses (IRB 

number:1041849-202306-BM-100-01). This waiver was 

granted because the study involved the analysis of preexist-

ing data collected during the assessment of musculoskeletal 

disorder risk factors. 

 

Cervical movement measurements using two-dimen-

sional video analysis 

We tracked the markers to estimate cervical movements 

during protraction and retraction. This tracking was accom-

plished using Python (Version 3.6.15; Python Software 

Foundation) with the primary computer vision library 

OpenCV. The tracking algorithm employed was the Channel 

and Spatial Reliability Tracking tracker, known for its 

reliability and robustness in tracking.16,17 

For video recording, we used a Samsung Galaxy S20 

smartphone (Samsung Inc., Seoul, Korea) equipped with a 4 

K video recording application, capturing video at a resolu-

tion of 3,840×2,160 pixels at 60 frames per second. The 

smartphone was securely mounted on a tripod, positioned 

100 cm from the side of the chair, and adjusted to the height 

corresponding to the level of the subject's tragus. To facili-

tate tracking, two spherical markers, each with a diameter of 

20 mm, were affixed to the tragus of the ear and spinous 
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process of C7. 

The head tilt angle (HTA) was calculated as the angle 

formed between the line connecting the lateral canthus of 

the eye, a marker on the tragus of the ear, and a vertical line 

passing through the midpoint of the tragus marker (canthus-

tragus-horizontal) (Figure 1).11,18 The CVA was measured 

between the line connecting the two markers on the tragus 

of the ear and the spinous process of C7 and a horizontal 

line passing through the marker on the spinous process of 

C7 (Figure 1).11,18 The head excursion angle (HEA) was 

determined by combining HTA and CVA measurements. 

HEA was defined as the angle between the line connecting 

the two markers on the tragus of the ear and the spinous 

process of C7, and the line connecting the lateral canthus of 

the eye to the marker on the tragus of the ear (Figure 1).19 

Protraction and retraction distances were assessed by meas-

uring the displacement of the marker on the tragus between 

the initial resting position and the endpoints of cervical 

protraction and retraction (Figure 1). 

For cervical movements during retraction, the partici-

pants were instructed to retract their heads as much as 

possible and then return to the starting position. Pro- and 

retraction were performed consecutively, and each proce-

dure was repeated three times. 

 

Data analysis of cervical movements during protraction 

and retraction 

The head tilt, craniovertebral, and head excursion angles 

during protraction and retraction were measured while the 

subjects were in a seated position. For cervical movement 

analysis during protraction and retraction, measurements 

included HTA, CVA, HEA, and protraction and retraction 

distances at the endpoints of cervical protraction and re-

traction. The endpoints of protraction and retraction were 

defined as the positions where the most significant move-

ment occurred in a positive or negative direction from the 

typical seated posture along the horizontal axis. We sub-

tracted the HTA, CVA, and HEA at the endpoints of protrac-

tion and retraction from the HTA, CVA, and HEA in the 

resting position to quantify the movement of the upper and 

lower cervical spine. 

 

HTA during protraction (PHTA)= 

HTA in end point of protraction – HTA in resting 

 

CVA during protraction (PCVA)= 

CVA in resting – CVA in end point of protraction 

 

HEA during protraction (PHEA)= 

HEA in end point of protraction – HEA in resting 

 

HTA during retraction (RHTA)= 

HTA in end point of retraction – HTA in resting 

 

CVA during retraction (RCVA)= 

CVA in resting – CVA in end point of retraction 

 

HEA during retraction (RHEA)= 

HEA in end point of retraction – HEA in resting 

 

As PHTA becomes less pronounced (more negative), the 

upper cervical extension increases during protraction. With 

increasing PCVA (greater positive values), the lower cervi-

cal flexion also increased during protraction. As the PHEA 

gains strength (more positive values), cervical protraction 

becomes more pronounced during this movement. With a 

 

Figure 1. Cervical kinematic measurements using two-dimensional video analysis during cervical protraction and retraction. 
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growing RHTA (increasing positive values), upper cervical 

flexion intensifies during retraction. Conversely, a decrease 

in RCVA (more negative values) resulted in a greater lower 

cervical extension during retraction. Decreasing the RHEA 

(more negative values) leads to increased cervical retraction 

during this phase. 

 

ML modeling 

We conducted ML analysis using Orange data mining 

software (Version 3.3.0, developed in Ljubljana, Slovenia) 

in conjunction with Python (Version 3.6.15, developed by 

the Python Software Foundation). 

 

1) Pre-processing and missing data handling 

Eight numerical predictors (PHTA, PCVA, PHEA, RHTA, 

RCVA, RHEA, protraction, and retraction distances) were 

included in the present study. The target was transformed 

into a dichotomous variable with and without NSCNP. 

Exploratory data analysis was performed to detect missing 

data. Imputation for handling missing data was performed 

by eliminating instances with unknown values. We assessed 

the distribution of each variable using various visualization 

methods, including boxplots, scatterplots, and linear projec-

tions. This comprehensive examination aimed to identify 

and eliminate outliers using a local outlier factor (with 

parameters set at a contamination rate of 10%, 20 neighbors, 

and the Euclidean metric) because of its potential impact on 

the accuracy of the learning model. 

 

2) ML algorithm 

From the complete dataset consisting of 740 cases, we 

divided it into two subsets: a training set (comprising 80% 

of the data, with a total of 592 samples, where individuals 

with NSCNP (POWs) numbered 373 and those without 

NSCNP numbered 219) to construct our predictive models, 

and a test set (representing 20% of the data, totaling 148 

samples, with 90 POWs having NSCNP and 58 POWs 

without NSCNP) for external validation to evaluate model 

performance. We employed six distinct ML algorithms: 

neural network, random forest, logistic regression, gradient 

boosting, decision tree, and support vector machine. These 

algorithms were trained using a 10-fold cross-validation 

approach in the training set.  

 

3) Model validation 

The primary measure of model performance focused on 

the calculation of the area under the curve (AUC), which 

was determined for both the training and test datasets, with 

emphasis on the target class being the average across all 

classes. Additionally, secondary indicators of model perfor-

mance encompassed classification accuracy, recall, preci-

sion, and F1 score (which harmoniously combines recall 

and precision) for both the training and test data, with the 

same target class being the average across all classes. We 

categorized the predictive model's performance as excellent 

(AUC≥0.9), good (AUC between 0.8 and 0.9), fair (AUC 

between 0.7 and 0.8), or poor (AUC<0.7) based on the AUC 

value.13  

We calculated the importance of feature permutation 

using the training data to determine the significance of each 

predictive variable. This analysis involved evaluating the 

contribution of each feature to the model’s performance by 

measuring its impact on the AUC, and consequently, any 

increase in the model's prediction error. 

 

RESULTS 

POWs characteristics 

A total of 740 POWs (99 men and 641 women) were 

included in the ML analysis, with a NSCNP proportion of 

62.6% (n=463, men=37, women=426). Means and standard 

deviations of NRS was 5.9±2.8 and 0.6±1.1 in POWs with 

and without NSCNP, respectively. The means and standard 

deviations of all variables are provided in Table 1. Figure 2 

shows the distribution of RCVA, PCVA and PHEA data 

between POWs with and without NSCNP. 

 

Predictive models of ML 

The performance of the six ML models for predicting the 

NSCNP during model training and testing is shown in Table 

2, and the most important predictors of the best performance 

(random forest model) are described in Figure 3. 

Six ML models in the training dataset classified POWs 

with and without NSCNP, performed in the order of high 

AUC, random forest (AUC,0.835 [good]; F1, 0.767; 

accuracy, 0.774), neural network (AUC, 0.711 [fair]; F1, 

0.682; accuracy, 0.699], decision tree (AUC, 0.691 [poor]; 

F1, 0.695; accuracy, 0.693), gradient boosting (AUC, 0.676 

[poor]; F1, 0.659; accuracy, 0.657), logistic regression 

(AUC, 0.590 [poor]; F1, 0.559; accuracy, 0.633), and 

support vector machine (AUC, 0.582 [poor]; F1, 0.589; 

accuracy, 0.593) (Table 2 and Figure 4). In the test dataset 

classification of POWs with and without NSCNP, six ML 

prediction models were performed in the following order: 

high AUC, random forest (AUC, 0.800 [good]; F1, 0.744; 

accuracy, 0.750), decision tree (AUC, 0.790 [fair]; F1, 

0.772; accuracy, 0.770), gradient boosting (AUC, 0.701 

[fair]; F1, 0.659; accuracy, 0.655), neural network (AUC, 
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0.649 [poor]; F1, 0.632; accuracy, 0.655), logistic regres-

sion (AUC, 0.548 [poor]; F1, 0.494; accuracy, 0.595), and 

support vector machine (AUC, 0.542 [poor]; F1, 0.506; 

accuracy, 0.568) (Table 2 and Figure 4). 

For feature permutation importance, in the order of high 

impact AUC, RCVA, PCVA, PHEA, protraction distance, 

RHTA, retraction distance, RHEA, and PHTA (Figure 3). 

DISCUSSION 

This study represents a significant contribution to our 

understanding of NSCNP by investigating the relationship 

between cervical movements during protraction and retrac-

tion and the presence of NSCNP as well as by using ML 

models to classify individuals with and without NSCNP 

based on these kinematic variables. The findings of this 

study shed light on the intricate relationship between 

cervical movements and NSCNP. Traditionally, neck pain 

research has focused on association between neck posture 

and NSCNP or the linear relationship between neck pain 

and movement patterns and has often yielded inconsistent 

results. In this study, the authors recognized the potential for 

nonlinear relationships and employed ML techniques to 

capture these complex associations. The results indicate that 

the relationship between cervical movements and NSCNP is 

not straightforward, as evidenced by the variable perfor-

mance of the ML models. 

Six ML algorithms, including random forest, neural 

network, decision tree, gradient boosting, logistic regression, 

and support vector machine, were used to classify indi-

viduals with and without NSCNP. Random forest emerged 

as the top-performing model, demonstrating good accuracy 

and an AUC of 0.800 in the test dataset. Although direct 

comparison is difficult and related studies are lacking, in a 

study that classified individuals with and without neck pain 

using upper cervical rotation movement control test data, 

the AUC was 0.61, which was relatively lower than our 

study.20 The performance of this model indicates its poten-

tial utility in clinical settings for classifying individuals with 

Table 1. Mean±standard deviation of baseline characteristics in POWs with and without NSCNP 

Variables Without NSCNPa (N=277) With NSCNP (N=463) p 

Sex 62/215 37/426 - 

NRSb 0.64±1.1 5.93±2.8 0.000 

NPQc-pain intensity 0.85±0.3 2.61±0.6 0.000 

PHTAd  0.76±7.49  0.80±8.45 0.935 

PCVAe 18.71±5.06 17.13±5.85 0.000 

PHEAf 18.25±7.33 16.33±7.74 0.001 

RHTAg  0.57±7.21   1.1±6.66 0.313 

RCVAh –6.79±4.08 –6.44±4.78 0.293 

RHEAi –7.30±5.57 –7.55±5.80 0.556 

Protraction distance  59.00±18.17  56.51±19.97 0.083 

Retraction distance  21.11±11.45  20.72±12.03 0.654 

aNSCNP, non-specific chronic neck pain; bNRS, numerical rating scale; cNPQ, Northwick Park neck pain questionnaire; dPHTA, head 

tilt angle during protraction; ePCVA, craniocervical angle during protraction; fPHEA, head excursion angle during protraction; 

gRHTA, head tilt angle during retraction; hRCVA, craniocervical angle during retraction; iRHEA, head excursion angle during 

retraction. 

 

Figure 2. Multi-axis linear projection for classification 

of public service office workers between with and 

without non-specific chronic neck pain [blue dot= public 

service office workers without non-specific chronic neck 

pain, red dot= public service office workers with non-

specific chronic neck pain, dot size according to cranio-

vertebral angle during protraction (the smaller the dot 

size, the greater the craniovertebral angle during protrac-

tion)]. 
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NSCNP based on cervical movements during protraction 

and retraction. Although the decision tree model demon-

strated fair performance, it also showed promise in classify-

ing NSCNP cases, achieving an AUC of 0.790 in the test 

dataset. Gradient boosting, neural networks, and logistic 

regression, while showing lower AUC values, still had some 

predictive capabilities. However, the support vector machine 

model exhibited the lowest performance among ML algo-

rithms. 

In terms of feature permutation importance, the random 

forest model highlighted RCVA, PCVA, and PHEA as 

significant predictors of NSCNP. Nevertheless, except for 

PCVA and PHEA, there were no statistically discernible 

distinctions between individuals with and without NSCNP 

concerning the remaining influential predictors. Specifically, 

the disparity in PCVA and PHEA between individuals with 

and without NSCNP was only 1.58° and 1.92°, respectively. 

Previous studies have reported that women with neck pain 

exhibit a horizontal axis displacement of 10 cm for pro-

traction and retraction distances, which is significantly 

smaller than that observed in asymptomatic women (6.8 

cm).3 Another study also reported that the subclinical neck 

pain group displayed a greater displacement in the hori-

zontal axis for retraction distance compared to the normal 

group.4 However, decreased cervical retraction might be 

attributed to factors such as sternocleidomastoid and pos-

terior neck muscle tightness, limited cervical spine gliding, 

and weakened deep neck flexors responsible for cervical 

Table 2. Performance metrics of six machine learning algorithms in the training and test set 

 Performance metrics of six machine learning algorithms in the training set 

Model AUC Accuracy F1 Precision Recall 

Decisoin tree 0.691 0.693 0.695 0.698 0.693 

Gradient boosting 0.676 0.657 0.659 0.662 0.657 

Logistic regression 0.590 0.633 0.559 0.598 0.633 

Neural network 0.711 0.699 0.682 0.690 0.699 

Random forest 0.835 0.774 0.767 0.771 0.774 

Support vector machine 0.582 0.593 0.589 0.586 0.593 

 Performance metrics of five machine learning algorithms in the test set 

Model AUC Accuracy F1 Precision Recall 

Decisoin tree 0.790 0.770 0.772 0.779 0.770 

Gradient boosting 0.701 0.655 0.659 0.677 0.655 

Logistic regression 0.548 0.595 0.494 0.527 0.595 

Neural network 0.649 0.655 0.632 0.644 0.655 

Random forest 0.800 0.750 0.744 0.747 0.750 

Support vector machine 0.542 0.568 0.506 0.509 0.568 

 

Figure 3. Feature permutation importance of random forest model in the training set. 
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stabilization.21,22 Consequently, numerous physical thera-

pists and various clinicians have endeavored to evaluate 

cervical retraction or craniocervical flexion movements, 

along with upper cervical motor control, in individuals with 

NSCNP.23-26 

Similar to how clinicians assess these movements, the 

ML model also underscored the importance of RCVA in 

relation to cervical retraction as a significant predictor of 

NSCNP in the random forest model. Intriguingly, predictors 

associated with cervical protraction have also emerged as 

vital contributors to ML models. Therefore, further in-

vestigation is warranted to delineate the movement patterns 

of cervical protraction and retraction in individuals with 

NSCNP and to compare these patterns in individuals with 

and without NSCNP. Additionally, it is imperative to 

demonstrate the potential improvement in neck pain through 

interventions aimed at restoring normal movement patterns 

in individuals with NSCNP. The findings of this study have 

several implications for clinical practice and research. First, 

they emphasized the need to consider nonlinear relation-

ships when studying NSCNP and other musculoskeletal 

conditions. ML techniques, as demonstrated here, offer a 

valuable tool for capturing such complexities. Second, the 

identification of key cervical kinematic variables such as 

RCVA, PCVA, and PHEA provides clinicians with potential 

targets for assessment and intervention in individuals with 

NSCNP. By monitoring and addressing abnormalities in 

these kinematic parameters, healthcare providers may be 

able to better diagnose and treat NSCNP. Third, the strong 

performance of the random forest model suggests its po-

tential as a clinical tool for classifying NSCNP cases based 

on cervical movement. This could streamline the diagnostic 

process and assist treatment planning. 

It’s important to acknowledge some limitations of this 

study. Because we did not control compensatory upper 

thoracic motion, cervical kinematics during protraction and 

retraction movements would be overestimated. Controlling 

compensatory motion data could enhance machine learning-

based classification. The sample consisted primarily of 

office workers, which may limit the generalizability of the 

findings to other populations. Additionally, the retrospective 

design of the study using existing data may introduce 

selection bias and confounding variables. Future research in 

this area could focus on prospective studies with more 

diverse populations and consider additional clinical varia-

bles. Further investigation into the mechanisms underlying 

the relationship between cervical movements and NSCNP is 

warranted. 

 

CONCLUSIONS 

In conclusion, this study highlights the potential of ML 

models to enhance our understanding of NSCNP and offers 

valuable insights into the complex relationship between 

cervical movements during protraction and retraction and 

the presence of NSCNP. Cervical kinematic variables such 

as RCVA, PCVA and PHEA can be potential targets for 

assessment and intervention in individuals with NSCNP. 

Clinicians and researchers can leverage these findings to 

develop more effective diagnostic and treatment strategies 

for individuals with NSCNP. 

 

Key Points  

Question Is there a relationship between cervical movements 

during protraction and retraction and the presence of non-

specific chronic neck pain (NSCNP)? How well can machine 

learning (ML) models classify individuals with and without 

NSCNP based on cervical movements during protraction and 

retraction? 

  

Figure 4. Receiver operating characteristic (ROC) curves of six machine learning algorithms (A: in the training set, B: in 

the test set). 
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Findings Random forests emerged as the best-performing 

ML model, achieving an AUC of 0.800. Key predictors of 

NSCNP identified by the random forest model included 

craniovertebral angle during retraction and protraction, and 

head excursion angle during protraction. 

Meaning The random forest model, with its strong perfor-

mance, may serve as a clinical tool to classify NSCNP cases, 

potentially aiding in treatment planning. Key cervical kine-

matic variables such as craniovertebral angle during retrac-

tion and protraction, and head excursion angle during pro-

traction can be potential targets for assessment and interven-

tion in individuals with NSCNP. 
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