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INTRODUCTION 

Lower limb pain is concomitant with back pain in 61.8% 

of cases.1 Specifically, pain in the back and hip is signifi-

cantly related with knee and ankle pain.1 Early diagnosis 

can prevent recurrence of pain.2 A recent review suggested 

that classification and prediction of pain using artificial 

intelligence and machine learning algorithms (decision tree, 

support vector machine, artificial neural network, k-nearest 

neighbor, etc.) has significant potential.3 A classification 
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Background Multiple factors are associated with lower back and lower limb (LB & LL) pain, 

such as impaired muscle strength, balance, endurance, and motor control, and altered movement 

patterns. Symmetry of motion, strength and balance are goals for rehabilitation in patients with 

LB & LL pain. When classifying patients before or during on- and offline assessment, it is 

necessary that an easy to use functional test be available for clinicians. 
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Purpose To establish a classification tree model for discriminating people with and without LB & 

LL pain during walking using symmetry values from side plank endurance test, hip abductor 

strength test, one-leg standing time tests and walking tests. 

Study design Cross-sectional study 

Methods A total of 100 subjects with and without LB & LL pain during walking participated. We 

measured the side plank endurance time, hip abductor strength and one-leg standing time with 

eyes open and closed, and the sagittal and frontal head angles at comfortable and fast walking 

speeds using a wearable wireless earbud sensor and calculated the symmetry index (SI) for each 

test. Classification and regression tree analysis with 10-fold cross validation was used to develop 

the classification model. 

Results The classification tree had 83% accuracy for discriminating people with and without LB 

& LL pain during walking. The most important factor for classification was the SI of the one-leg 

standing time with eyes closed; the second-most important factor was the SI of the frontal head 

angle during fast walking. 

Conclusions The present classification model can differentiate people with and without LB & LL 

pain during walking based on symmetry data acquired during functional tests, such as one-leg 

standing time with the eyes closed and fast walking test using the wearable device. Based on the 

present results, clinicians can classify patients before and during on- and offline assessments 

using cutoff values of the SI of the one-leg standing test with eyes closed of 63.88%, and of 

frontal head motion during a fast-walking test of 63.31%. 
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model with 70-100% accuracy developed by machine learn-

ing algorithms could improve lower back pain classification 

accuracy using data on kinematics, electromyography, gait 

parameters, acceleration, pain descriptions and behavior, 

and magnetic resonance imaging.3 

Given that multiple factors are linked with lower back 

and lower limb (LB & LL) pain, such as impaired muscle 

strength, balance, endurance, and motor control, as well as 

altered movement patterns, it is necessary to examine 

patients from multiple perspectives.4,5 Especially, altered 

movement patterns are observed in the frontal plane in 

people with lower back pain, patellofemoral pain and 

chronic ankle instability.6-8 Asymmetric lateral trunk sway 

and lateral pelvic tilt are observed during walking in people 

with knee osteoarthritis.9 People with lower back pain show 

an asymmetrical pelvic pattern in the frontal plane while 

sitting and standing, which might cause this asymmetrical 

trunk motion.7 People with patellofemoral pain syndrome 

show excessive lateral trunk motion, hip adduction and knee 

abduction during squatting and stepping down.10,11 Low hip 

abductor strength while stepping down can lead to exces-

sive trunk lateral sway or knee valgus.12 Reduced balance 

ability, reflected in the one-leg standing time with the eyes 

open or closed, is another factor in lower back pain and 

chronic ankle instability.13,14 

Symmetry of kinematic data, strength and gait parameters 

has been used as clinical goals, although most people 

exhibit movement patterns with right dominance due to 

physiological asymmetries that cause kinematic changes in 

the trunk and lower extremities.15,16 The symmetry index 

(SI) has been used to quantify symmetry during gait per-

formance.17 People with lower back pain exhibit less 

symmetric kinematic of the trunk and lower limbs during 

walking than healthy controls, and asymmetric motor 

control during walking.18,19 Asymmetry in the isometric 

strength of the hip abductor, reflected in poorer balance in 

the one-leg standing and drop jump tests following anterior 

cruciate ligament reconstruction relative to healthy controls, 

is a risk factor for lower extremity injury.20 

Input data for machine learning models should be easy to 

collect, so that the large amount of data needed to build 

classification models can be obtained.21 In the present study, 

to build a classification tree model, we used easy-to-collect 

input data from simple, functional tests conducted in the 

clinical setting, such as a walking test using a wearable 

(earbud) inertial measurement unit (IMU) sensor, a one-leg 

standing test, a side plank endurance test and a hip abductor 

strength test. The purpose of the study was to determine 

whether a classification tree model can discriminate be-

tween people with and without LB & LL pain during 

walking using symmetry data as the model input (SIs for the 

side plank endurance test, hip abductor strength test, and 

one-leg standing test with eyes open and closed, and frontal 

and sagittal head angles during comfortable and fast walk-

ing). In addition, we derived cutoff values for the most 

important factors for classifying the groups. We hypothe-

sized that the classification tree model would be able to 

correctly differentiate people with and without LB & LL 

pain during walking. 

 

METHODS  

Participants 

Ten to fifteen subjects were needed per variable of 

interest to ensure an adequate sample size to develop the 

model.22,23 The present study considered eight variables, so 

100 subjects were recruited within range of 80 to 120 

subjects as suggested by criteria for calculating the sample 

size.22,23 We included young adults (19−30 years old) with 

and without LB & LL pain during walking who engaged 

in regular exercise (1−3 days per week, for 1−3 h per 

workout).24 Subjects were divided into a pain group (visual 

analogue scale LB & LL pain score during walking in daily 

life≥3) and a non-pain group (<3). The exclusion criteria 

were LB & LL musculoskeletal pain too severe for the 

performance of daily activities or completion of the experi-

ments, and any disorder of the vestibular, neurological, 

cardiopulmonary or psychological system. All subjects 

consented to participate in this study and provided informed 

consent. This study was approved by the Institutional 

Review Board of Jeonju University (JJIRB-210114-HR-

2021-0113). 

 

Instrumentation 

1) Wireless earbud-type IMU sensor  

While participants walked on a treadmill, we recorded 

head angle in the sagittal and frontal planes using a wireless 

earbud-type IMU sensor. A single high-resolution IMU 

sensor (BNO080; Ceva Technologies, Inc., Rockville, MD, 

USA) was embedded into a wireless right earbud (QCY-T6; 

Dongguan Hele Electronics Co., Ltd., China). This sensor 

was equipped with a triaxial accelerometer and gyroscope 

to calculate head angle from raw linear acceleration and 

angular rotation data. The IMU recorded acceleration in the 

vertical axis while each subject stood. The sampling fre-

quency was 100 Hz. Data obtained from the IMU were 

transmitted via a Bluetooth antenna to a computer. Prior to 

the angle calculations, a low-pass filter was used to remove 

any linear acceleration. Offset calibration was conducted for 

1 s before starting each set of measurements. Data were 
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analyzed using a program written in MATLAB (version 

R2018a; MathWorks, Natick, MA, USA).  

 

2) Tensiometer 

We measured the strength of the hip abductor (in kgf) 

during maximal isometric contraction using a tensiometer 

with a non-elastic band (Smart KEMA; Factorial Holdings 

Co., Seoul, South Korea). The strength measurement system 

had two load cells. The force of the hip abductor was 

measured and transmitted to a tablet PC (Galaxy Tab A6 

10.1; Samsung Inc., Seoul, South Korea) via a Bluetooth 

device. Strength data were analyzed using Smart KEMA 

software (Factorial Holdings Co.). 

 

Procedure 

The experimental procedure consisted of two sessions: 

baseline measurements and warm-up, and measurement of 

symmetry. Measurement of four types of symmetry were 

conducted in a random order, determined by the random 

function in Excel software. SI, expressed as a percentage, 

was used to quantify the asymmetry of each variable (side 

plank “endurance time”, strength of the hip abductor, one-

leg standing time with eyes open and closed, and sagittal 

and frontal head angles during treadmill walking at 

comfortable and fast speeds) using the formula:25  

 

SI [%] = 100% − (
Left side − Right side

Left side + Right side
× 100%) 

 

An SI value of 100% indicates perfect symmetry; the 

lower the value, the worse the asymmetry.  

 

1) Baseline measurements and warm-up 

Subject characteristics (age, sex, height, weight, body 

mass index and LB & LL pain intensity) were measured at 

baseline. Subjects performed 5 minutes (min) of indoor 

cycling to warm up, followed by a 5-min rest.26  

 

2) Measurement of symmetry in the side plank 

endurance test 

To perform the side plank endurance test, the subjects lay 

on their side with their legs extended. The subjects were 

asked to lift their hips off the floor while supported by one 

elbow and both feet. The goal was to maintain the sides of 

the trunk and lower legs in a straight line. The subjects were 

asked to maintain this position for as long as possible; the 

time was recorded as the measure of plank endurance 

(Figure 1A). The test ended when a straight line could no 

longer be maintained, such that the hip dropped to the floor, 

or the subject asked to stop. Subjects were tested on both 

sides, resting for 5 min in between.27 

 

3) Measurement of symmetry in the hip abductor 

strength test  

While in the side-lying position, the maximal isometric 

strength of the hip abductor was measured as described 

above. The pelvis is held in position during this test, to 

confirm whether compensatory pelvic elevation and rotation 

have occurred. During the test, the subjects were asked to 

extend the hip and knee on the tested side, with 10° of hip 

abduction, while the hip and knee on the non-tested side 

were flexed slightly to maintain the side-lying position 

(Figure 1B). The duration of the test was 5 s. Both sides 

were tested, and the highest force was recorded and used in 

the data analysis.28 

 

4) Measurement of symmetry in the one-leg standing 

test with eyes open and closed 

We measured the one-leg standing times with eyes open 

and closed for both legs (time between raising the leg and 

placing it back on the floor) (Figure 1C).29  

 

5) Measurement of symmetry of head motion in the 

treadmill walking test at comfortable and fast speeds 

Before performing the treadmill walking test, each subject 

placed the wireless earbud with the IMU sensor into their 

right ear, for measurement of head angle in the sagittal and 

frontal planes. Subjects were asked to look straight ahead. 

Comfortable and fast speeds were selected by subjects be-

fore the data recording began (labeled as “walk comfortably” 

and “walk as fast as possible without running”, respectively) 

(Figure 1D).30 After the treadmill reached the self-selected 

speed, the tester collected sagittal and frontal head motion 

data during 1 min of walking. Only the middle 50 s of the 

collected data were analyzed; thus, the initial and last 5 s of 

data were excluded. Subjects rested for 1 min between the 

comfortable and fast speed conditions. 

 

Statistical analysis 

The data were tested for normality using the Shapiro–

Wilk test. The independent t-test was used to compare 

subject characteristics between the groups with and without 

LB & LL pain. Classification and regression tree (CART) 

analysis was used to develop a classification model for 

discriminating the groups. The eight classification variables 

were the SI values of the side plank endurance test, hip 

abductor strength test, one-leg standing test with eyes open 

and closed, and the sagittal and frontal head angles during 

walking at comfortable and fast speeds. A classification tree 

selected each predictor variable, with impurity minimized 
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using the Gini index. Out-of-sample errors on unseen data 

were obtained through ten-fold cross validation that was 

used to avoid overfitting and evaluate the CART model.31 

All data were randomly split into 10 subsets, 9 of which 

were used for training the model; the tenth was used eval-

uating an out-of-sample error. This procedure was repeated 

for all subsets, such that they were all used as the testing 

sample. The optimal number of nodes was selected by a 

backward pruning method. Statistical analyses were 

performed using SPSS software (ver. 26.0; IBM Corp, 

Armonk, NY, USA). The significance threshold was set as 

p<0.05. 

 

RESULTS 

There were no significant differences in subject charac-

teristics between the groups except for pain intensity during 

walking (Table 1). In the pain group, the numbers of 

subjects with lower back, hip, knee and ankle pain were 3, 6, 

10 and 11, respectively, including concomitant pain in 

multiple regions of the body. Figure 2 shows the CART 

classifications of the subjects with and without LB & LL 

pain. The tree has a total of five nodes, of which three are 

leaf nodes. The most important classification variable was 

the SI of the one-leg standing test with eyes closed; the 

second-most important variable was frontal head angle 

during fast walking. An example of how to interpret the 

classification tree is as follows: IF the SI value of the one-

leg standing time with eyes closed is ≤63.88% AND the SI 

value of the frontal head angle during fast speed walking is 

≤63.31%, THEN it is predicted that the participant belongs 

to the pain group. The overall classification accuracy of the 

decision tree model was 83%. The confusion matrix is 

shown in Table 2. 

 

DISCUSSION 

The aim of this study was to determine whether a classi-

fication tree model could be used to classify people with 

and without LB & LL pain during walking. The developed 

model had an 83% accuracy rate based on symmetry data 

acquired during functional tests, i.e., endurance, strength, 

 

Figure 1. Symmetry tests (side plank endurance test [A], hip abductor strength test [B], one-leg standing test with eyes 

open and closed [C], and walking test at comfortable and fast speeds for measuring the sagittal and frontal head angles 

[D]) 

Table 1. Demographic characteristics of the participants                                               (N=100) 

Variables Non-pain group Pain group p-value 

Male/female, n 43/36 6/15 - 

Age, years 22.5±3.0  22.1±2.0 0.60 

Weight, kg  66.2±13.8   61.8±15.1 0.21 

Height, cm 169.4±8.4 166.0 ± 8.2 0.11 

Body mass index, kg/m2  22.9±3.3  22.2±3.8 0.42 

Pain intensity (VAS), cm   0.2±0.5   3.8±0.9 <0.01* 

Data are expressed as mean±standard deviation. *p-value under 0.05 was statistically significant. Abbreviation: VAS, visual 

analogue scale. 
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balance and walking tests, performed using a wearable 

device; such data are easy to collect in clinics. According to 

our results, when the SI values of the one-leg standing time 

with eyes closed is ≤63.88% and the frontal head angle 

during fast walking is ≤63.31%, clinicians can pre-classify 

the patient into the LB & LL pain group. Whereas, when the 

SI value of the one-leg standing time with eyes closed is 

>63.88% or SI values of the one-leg standing time with eyes 

closed is ≤63.88% and the frontal head angle during fast 

walking is >63.31%, clinicians can pre-classify the people 

without the LB & LL pain group. Using the cutoff values 

established herein for SI value, the present model can be 

applied by clinicians for pre-classification of patients before 

offline examinations and telerehabilitation. 

The most important factor for classification was the SI of 

the one-leg standing time with eyes closed. The standing 

time was shorter in patients with lower back pain than in 

healthy controls, possibly because patients with lower back 

pain have reduced trunk and lumbar proprioception in the 

absence of visual input.32,33 Similarly, people with a history 

of ankle sprain have reduced somatosensory feedback in the 

foot and ankle.14 People with lower back or ankle pain may 

tend to depend on visual information to maintain bal-

ance.13,14 Postural asymmetries in the one-leg stance and 

drop jump tests following anterior cruciate ligament re-

construction are present compared to matched controls.34 

The LB & LL pain group in the present study may have 

relied more on visual information for balance, leading to 

asymmetry in the one-leg standing test with eyes-closed 

condition being the best variable for classification and 

asymmetry in eye-open condition not being included in the 

model.  

The second-best predictor for classification in this study 

was the SI of the frontal head angle during fast walking, 

despite the SI of the sagittal head angle during walking not 

being included in the model. This result supports previous 

studies demonstrating altered movement patterns in the 

frontal plane, but not the sagittal one, in people with LB & 

LL pain.6-8 Previous studies found that people with chronic 

ankle instability exhibit excessive lateral trunk displacement 

towards the stance limb during walking and the star excur-

sion balance test.35,36 People with chronic ankle instability 

use a compensatory strategy characterized by a lateral shift 

of the center of gravity, with increased force bearing on the 

side of the foot during the stance phase to overcome 

external inversion torque while walking.37 Fast walking 

with unilateral leg loading can also induce an asymmetrical 

gait pattern,38 so the SI of the frontal head angle during 

slow walking not being included in the model. Unilateral 

trunk sway might induce asymmetry in frontal head motion 

during fast walking; this could explain the importance of the 

SI of the frontal rather than sagittal angle in this study. 

Our study had some limitations. First, the number of 

 

Figure 2. Classification tree model for distinguishing groups with and without lower back and lower limb pain (SI; 

symmetry index, OLS_EC; one leg standing time with eye closed, FH_FastWalk; frontal head angle during a fast-

walking test). 

Table 2. Confusion matrix of the classification tree 

 
Non-pain 

group 

Pain 

group 
Accuracy 

Overall 

accuracy 

Non-pain group 75 4 94.9% 
83.0% 

Pain group 13 8 38.1% 
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subjects with LB & LL pain was smaller than that without it, 

although we are satisfied that the sample size was adequate 

for developing the decision tree model. Secondly, we as-

sessed the symmetry of trunk motion during walking using 

an earbud-type IMU sensor. Although a sensor on the trunk 

is more appropriate than one on the head, the ear is a more 

familiar location for a sensor because of the widespread use 

of in-ear audio devices.39 Also, a previous study suggested 

that the correlation between head and trunk motions is 

stronger in people with vestibular hypofunction;40 the pre-

sent study obtained symmetry data indirectly via the head 

instead of directly via the trunk. To confirm our head 

motion findings, a further study with a large sample of LB 

& LL pain sufferers is needed to develop a classification 

model based on symmetry data obtained from a trunk rather 

than head sensor. 

 

CONCLUSIONS 

The present classification model can differentiate people 

with and without LB & LL pain during walking based on 

symmetry data acquired while performing functional tests, 

such as one-leg standing test with eyes closed and walking 

tests using a wearable sensor. Based on the present results, 

clinicians can discriminate before or during on- and offline 

assessment using cutoff values of the SI of the one-leg 

standing test with eyes closed of 63.88%, and of frontal 

head motion during a fast-walking test of 63.31%. 

 

Key Points  

Question Can a classification tree model be established for 

discriminating people with and without pain in the lower 

back and lower limb during walking using symmetry data 

obtained from functional tests? 

Findings A classification tree was developed that can 

discriminate between people with and without pain in the 

lower back and lower limb during walking with 83% accu-

racy. The classification factors were the symmetry indexes of 

the one-leg standing time with eyes closed and frontal head 

angle during fast walking. 

Meaning Clinicians can apply cutoff values of the symmetry 

indexes of one-leg standing with eyes closed (63.88%) and 

frontal head angle in a fast-walking test (63.31%) when con-

ducting pre-screening in on- and offline evaluations. 
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