INTRODUCTION

More than 85% of ankle sprains that occur frequently in clinical practice are caused by excessive inversion of ankles. Repeated ankle sprains can lead to chronic ankle instability (CAI). Causes of CAI are looseness of lateral ligaments of the ankle, deterioration of proprioceptive sensation, decrease of posture control ability, and muscle weakness after ankle sprain. Dynamic ankle stability is defined as the ability to maintain balance in response to disturbing forces from the outside. Stabilization of dynamic joints is achieved by contraction of muscles surrounding joints. Eccentric activity of calf muscles and concentric activity of tibialis anterior and posterior muscles are important for ankle stability. As a method to prevent CAI, strengthening of peroneus longus that contributes to eversion of the ankle joint has been suggested. Among therapeutic interventions to prevent CAI, squat exercises are typical closed-chain movements that occur simultaneously with movements of ankle, knee, and hip joints. They can be properly performed through overall biomechanics and neuromuscular control. Squat exercises are also important to maintain good alignment of ankle posture. They have been recommended for the management of CAI.

Comparison of Activities of Tibialis Anterior, Peroneus Longus, and Tibialis Posterior Muscles according to Lunge Squats and Bulgarian Split Squats in a Healthy Population

Yong-wook Kim, Ph.D.; Tea-heon Kim, BSc; Mi-na Yang, BSc; Ye-seul Yon, BSc; Ji-hye Lee, BSc

Department of Physical Therapy, College of Medical Sciences, Jeonju University, Jeonju, South Korea

Background Previous studies reported that one-leg squat has various advantages in functional activities, no study has studied the effect of muscle activity on ankle stability.

Purpose The purpose of this study was to investigate the differential effects of squat type on the activity of the tibialis anterior, peroneus longus and tibialis posterior muscle for ankle stability.

Study design Cross-sectional study.

Methods The participants were 30 healthy adults. During each squat execution, tibialis anterior, peroneus longus and tibialis posterior muscle activities were assessed using surface electromyography under control of each squat posture.

Results The muscle activity of the tibialis anterior and peroneus longus applying Bulgarian split squat was significantly higher than lunge squat. However, the activity of the tibialis posterior showed no significance between squat conditions.

Conclusions This study demonstrated that Bulgarian squat was more effective at eliciting ankle dorsiflexor and evertor that are known as important role for ankle stability.

Key words Ankle stability; Bulgarian squat; Electromyography; Peroneus longus; Tibialis anterior.
of CAL. Previous studies have shown that one leg squat requires more neuromuscular activity due to reduced mediolateral base of support compared to two leg squats. Increased neuromuscular activity has also been reported to have a positive effect on proprioception and strength in functional activities. Although many studies have reported that one-leg squat has various advantages in functional activities, no study has studied the effect of muscle activity on ankle stability.

Therefore, the objective of this study was to investigate the effect of two types of single-leg squat exercise commonly used in clinical practice for strengthening and rehabilitation of lower limbs on muscles activity of the tibialis anterior (TA), peroneus longus (PL), and tibialis posterior (TP). The hypothesis of this study was that muscle activities of TA, PL, and TP muscles at Bulgarian split squat could be higher than those at lunge squat.

METHODS

This study recruited 30 healthy volunteers (15 males, 15 females) who met the selection criteria. Participants were given a detailed explanation of the study procedure. Written informed consent was obtained from each participant. This study was conducted in accordance with principles of the Declaration of Helsinki.

Volunteers who were able to maintain single-leg squat posture for longer than 10 s to check shank muscles activity were recruited for this study. Volunteers who had any neurological, musculoskeletal, or cardiopulmonary problems were excluded. True leg length was used to set the distance between the front and back feet during squatting. True leg length was defined as a distance from the anterior posterior iliac spine of the pelvis to the medial malleolus. Mean age, height, weight, and leg length of these participants were 22.9±1.7 years, 168.5±11.1 cm, 64.0±12.9 kg, and 85.1±5.9 cm, respectively.

Before measuring electromyography (EMG) signals and attaching electrodes, any hair on the skin to be attached was shaved. The skin was then cleaned with an alcohol swab before attaching the electrodes. EMG electrodes were attached to the TA, PL, and TP according to published recommendations. A Delsys Trigno EMG system (Delsys, Inc, Wellesley, MA, USA) was used to collect EMG data. EMG signals were converted to digital signals and processed using Works Acquisition EMG analysis software for personal computers (Delsys, Inc, Wellesley, MA, USA). The sampling rate of EMG signals was 2,000 Hz and EMG frequency bandwidth was restricted to 20-500 Hz. The common mode rejection ratio was set at 110 dB. The application of each squat was in random order. Metronome application was used to keep squat posture time constant. EMG measurement and operation of the metronome were started at the same time. After the start of the measurement, a squat posture was made for three seconds at the start position. The squat posture was maintained for five seconds. It was then returned to the start position for three seconds. EMG measurement value analysis and processing were performed using root mean square (RMS) value for five seconds to keep the posture except for the first and last one for three seconds.

For Bulgarian split squat, the meta-tarsophalangeal joint of the left foot was placed on the support board which was 30% length of each subject's height. The hip joint was allowed to extend 10 degrees. During the squat, the squat depth was adjusted so that the femur and tibia of the right leg were at an angle of 90 degrees and the right knee moved forward only to the position of the right toe (Figure 1). The starting position of the lunge squat was the same as the Bulgarian split squat. In order to maintain the trunk in upright posture, each hand was placed on the iliac crest. During lunge squat, the left knee was placed about two inches above the floor while the right leg was perpendicular to the

![Figure 1. Experimental posture used to measure tibialis anterior, peroneus longus and tibialis posterior muscle activity during lunge squat (A) and Bulgarian split squat (B).](image-url)
REFERENCES

CONCLUSIONS

This study investigated the effect of ankle stabilization on lunge squat and Bulgarian split squat to compare muscle activities of the TA, PL, and TP. Muscle activities of the TA and PL during Bulgarian split squat were significantly higher than those during lunge squat. However, there was no significant difference in muscle activity of the TP between the two squat conditions. Therefore, the hypothesis of this study was partially confirmed in that the Bulgarian split squat showed higher ankle stability than lunge squat.

<table>
<thead>
<tr>
<th>Key Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question Can Bulgarian squat exercise increase more muscle activity of tibialis anterior, peroneus longus, and tibialis posterior which contribute the ankle stability?</td>
</tr>
<tr>
<td>Findings Muscle activity of the tibialis anterior and peroneus longus applying Bulgarian split squat was higher than applying lunge squat. Activity of the tibialis posterior showed no difference between squat conditions.</td>
</tr>
<tr>
<td>Meaning Bulgarian split squat was more effective to elicit ankle dorsiflexor and evertor for ankle stability.</td>
</tr>
</tbody>
</table>

REFERENCES

Comparison of Activities of Leg Muscles according to Lunge Squats and Bulgarian Split Squats

